FÍSICA CUÁNTICA.

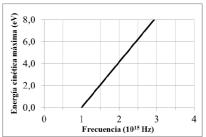
- 1) (C Jun94) Razonar la siguiente expresión: "La indeterminación en la cantidad de movimiento de una partícula debe ser siempre mayor que un valor según el principio de indeterminación de Heisenberg".
- 2) (P Sep94) Sobre una superficie de potasio situada en el vacío incide luz amarilla (λ=5,89·10⁻⁷m), produciéndose emisión fotoeléctrica: a) ¿Qué trabajo se requiere para arrancar un electrón de la capa más externa? b) ¿Qué energía cinética tienen los electrones arrancados de la superficie de potasio? (Longitud de onda umbral para el potasio =5,89·10⁻⁷m)
- 3) (C Jun95)(Sept01) Explicar brevemente el efecto Compton y su relación con la naturaleza de la luz.
- **4)** (C Jun95) ¿Cómo explicó Einstein la existencia de una longitud de onda crítica, λ_c , por encima de la cual los electrones no serían emitidos?
- 5) (P Sep95) Con luz de longitud de onda (λ=600·10⁻⁹m) se ilumina un metal que tiene una función de trabajo fotoeléctrico de 2eV. Hallar: a) La energía del fotón. b) Energía cinética del fotoelectrón de mayor energía. c) El potencial de frenado. Dato: Constante de Planck h=6,6x10⁻³⁴ Js
- **6) (C** Sept96)(Jun01) Enuncia la hipótesis de De Broglie y comenta algún resultado experimental que de soporte a dicha hipótesis.
- 7) (P Jun97) La luz solar que llega a la Tierra tiene una intensidad de 1800 W/m². ¿Cuántos fotones por metro cuadrado y por segundo representa esta radiación?. Suponer una longitud de onda media para la luz solar de 550 nm. Datos: Cte. de Planck, h = 6,63x10⁻³⁴ S.I.; Velocidad de la luz, c=3x10⁸ m/s.
- 8) (C Sept97) Sabiendo que la velocidad de la luz es c= $3x10^8$ m/s, determinar la energía de un fotón de luz verde cuya longitud de onda es λ =670 nm. Dato Cte. de Planck, h=6,63x10⁻³⁴ S.I.
- 9) (P Jun98) Si el bario tiene una función de trabajo de 2,48 eV, calcular la energía cinética máxima de los electrones que emitirá al ser iluminado con luz de longitud de onda de 480 nm. ¿Cuál es la velocidad de estos electrones? Datos: Velocidad de la luz, $c=3x10^8$ m/s; cte. de Planck, $h=6,63x10^{-34}$ J.s; masa del electrón, $m_e=9,11x10^{-31}$ Kg; carga del electrón, $e=1,6x10^{-19}$ C.
- **10**) (P Sept98) Si la posición del electrón puede medirse con una exactitud de 1,6x10⁻⁸m, ¿con qué precisión se puede conocer su velocidad?
 - Datos: Cte. de Planck, $h = 6,63 \times 10^{-34}$ S.I; Masa del electrón, $m_e = 9,11 \times 10^{-31}$ Kg
- **11)** (C Sept98) Calcular la relación entre las longitudes de onda de De Broglie de un grano de polen de 1g de masa dotado de una velocidad de 80 m/s y de un neutrón que lleva una velocidad de 2,5x10⁴ m/s. Datos: Masa del neutrón, m_n =1,67x10⁻²⁷ Kg
- **12)** (P Jun99) Se desea construir una célula fotoeléctrica que emita electrones con una energía cinética de 3 eV, cuando incida sobre ella un haz de radiación ultravioleta de longitud de onda de 300 nm. Calcular la longitud de onda umbral del material a utilizar en la construcción de la célula. ¿Qué ocurriría si se utilizará un material con una longitud de onda umbral inferior a la calculada? Datos: Constante de Planck, $h = 6,63 \times 10^{-34}$ S.I; velocidad de la luz: c=3x10⁸ m/s; carga del electrón: e=1,6x10⁻¹⁹ C
- 13) (C Jun00) Describir el efecto fotoeléctrico y enumerar alguna de sus aplicaciones.
- **14)** (C Jun00) ¿Por qué el espectro del hidrógeno tiene muchas líneas si el átomo de hidrógeno tiene un solo electrón?
- **15)** (C Sept00) Una superficie metálica emite electrones por efecto fotoeléctrico cuando sobre ella incide luz verde (500 nm) pero no lo hace cuando la luz es amarilla (600 nm). ¿Emitirá electrones cuando sobre ella incida luz azul (400 nm)? ¿Y si es roja (700 nm)?. Razona la respuesta.
- **16**) (P Sept00) Un electrón tiene una longitud de onda de De Broglie de 200 nm. Calcular: 1. Cantidad de movimiento del electrón. 2. Energía cinética del electrón. Datos: Constante de Planck, h=6,63x10⁻³⁴ J.s; masa del electrón, m_e=9,11x10⁻³¹kg Sol: 3,315·10⁻²⁷kg·m/s; 6,038·10⁻²⁴J
- 17) (P Jun02) Si la frecuencia mínima que ha de tener la luz para extraer electrones de un cierto metal es de $8.5x10^{14}$ Hz, se pide: 1. Hallar la energía cinética máxima de los electrones, expresada en eV, que emite el metal cuando se ilumina con luz de $1.3x10^{15}$ Hz. 2. ¿Cuál es la longitud de onda de De Broglie asociada a esos electrones? Datos: cte. de Planck, $h = 6.63x10^{-34}$ J.s; masa del electrón, $m_e = 9.11x10^{-31}$ Kg; carga del electrón, $e = 1.6x10^{-19}$ C. Sol: 1.86ev, 9.10^{-10} m
- **18)** (P Jun02) Cuando se ilumina un cierto metal con luz monocromática de frecuencia *1,2x10*¹⁵ *Hz*, es necesario aplicar un potencial de frenado de 2V para anular la fotocorriente que se produce. Se pide:
 - 1. Determinar la frecuencia mínima que ha de tener la luz para extraer electrones de dicho metal.
 - 2. Si la luz fuese de 150 nm de longitud de onda, calcular la tensión necesaria para anular fotocorriente. Datos: Constante de Planck, $h = 6,63 \times 10^{-34}$ S.I; velocidad de la luz: c=3x10⁸ m/s; carga del electrón: e=1,6x10⁻¹⁹ C Sol: $7,17 \cdot 10^{14}$ Hz; 5,315v

- **19)** (C Sept02) ¿Es cierto que el átomo de hidrógeno puede emitir energía en forma de radiación electromagnética de cualquier frecuencia? Razona la respuesta.
- **20**) (C Sept 03) La transición electrónica del sodio, que ocurre entre dos de sus niveles energéticos, tiene una energía $E=3,37 \times 10^{-19}$ J. Supongamos que se ilumina un átomo de sodio con luz monocromática cuya longitud de onda puede ser $\lambda_1=685,7$ nm, $\lambda_2=642,2$ nm, $\lambda_3=589,6$ nm. ¿Se conseguirá excitar un electrón desde el nivel de menor energía al de mayor energía con alguna de estas radiaciones? ¿Con cuál o cuáles de ellas? Razona la respuesta. Sol: Solo λ_3
 - Datos: Constante de Planck, $h=6,626 \times 10^{-34} \text{ J} \cdot \text{s}$; Velocidad de la luz en el vacío, $c=3 \times 10^8 \text{ m/s}$
- 21) (C Sept 03) Se lleva a cabo un experimento de interferencias con un haz de electrones que incide en el dispositivo interferencial con velocidad v y se obtiene que la longitud de onda de estos electrones es λ_e . Posteriormente se repite el experimento pero utilizando un haz de protones que incide con la misma velocidad v, obteniéndose un valor λ_p para la longitud de onda. Sabiendo que la masa del protón es, aproximadamente, 1838 veces mayor que la masa del electrón, ¿qué valdrá la relación entre las longitudes de onda medidas, λ_e/λ_p ? Sol:1838
- **22)** (P Jun03) El trabajo de extracción del platino es 1,01x10⁻¹⁸J. El efecto fotoeléctrico se produce en el platino cuando la luz que incide tiene una longitud de onda menor que 198 nm. 1. Calcula la energía cinética máxima de los electrones emitidos en caso de iluminar el platino con luz de 150 nm. 2. Por otra parte, el trabajo de extracción del níquel es 8x10⁻¹⁹J. ¿Se observará el efecto fotoeléctrico en el níquel con luz de 480 nm? Sol: 3,232·10⁻¹⁹J; No
- 23) (C Jun04) Considérense las longitudes de onda de un electrón y de un protón. ¿Cuál es menor si las partículas tienen a) la misma velocidad, b) la misma energía cinética y c) el mismo momento lineal? Sol: a) p, b) p; c) igual
- 24) (C Jun04) El principio de indeterminación de Heisenberg establece para la energía y el tiempo la relación $\Delta E \cdot \Delta t \ge h/2\pi$, donde h es la constante de Planck. Se tiene un láser que emite impulsos de luz cuyo espectro de longitudes de onda se extiende de 783 nm **a** 817 mn. Calcula la anchura en frecuencias Δv y la duración temporal mínima de esos impulsos. Tómese c = $3x10^8$ m/s. Sol: $1.59 \cdot 10^{13}$ Hz; 10^{-14} s,
- 25) (P Sept 04) Al iluminar una superficie metálica con luz de dos longitudes de onda se arrancan electrones que salen con diferentes energías. En el experimento se miden los potenciales de frenado de los electrones producidos que resultan ser de 0,24 V para una longitud de onda de 0,579 μm y de 0,32 V para la longitud de onda de 0,558μm. Se pide: 1. Utilizando exclusivamente los datos del problema, determina la frecuencia umbral del metal. 2. El cociente h/e entre la constante de Planck y la carga del electrón.

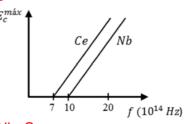
 Dato: c = 3x 10⁸ m/s.

 Sol: 4,596·10¹⁴Hz; 4,1·10⁻¹⁵.
- **26)** (C Jun05) La energía de disociación de la molécula de monóxido de carbono es *11 eV.* ¿Es posible disociar esta molécula utilizando la radiación de *632,8 nm* procedente de un láser de He-Ne? Datos: Carga del protón $e = 1,6x10^{-19}C$; $h=6,6x10^{-34}Js$. Sol: no.
- 27) (C Sept05) Enuncia el principio de incertidumbre de Heissenberg. ¿Cuál es su expresión matemática?
- 28) (C Sept05) El trabajo de extracción para un metal es 2,5 eV. Calcula la frecuencia umbral y la longitud de onda correspondiente. Datos: c=3.108 m/s, e=1,6.10⁻¹⁹C, h=6,6.10⁻³⁴Js. S: 6.10¹⁴Hz,495nm
- 29) (C Sept05) Dos partículas tienen asociada la misma longitud de onda de De Broglie. Sabiendo que la masa de una de ellas es triple que la de la otra, calcula la relación entre las velocidades de ambas partículas.

 Sol: 3
- 30) (P Jun06) La gráfica de la figura adjunta representa el potencial de frenado, Vf, de una célula fotoeléctrica en función de la frecuencia, v, de la luz incidente. La ordenada en el origen tiene el valor -2 V. Deduce la expresión teórica de Vf en función de v. ¿Qué parámetro característico de la célula fotoeléctrica podemos determinar a partir de la ordenada en el origen? Determina su valor y razona la respuesta. ¿Qué valor tendrá la pendiente de la recta de la figura? Dedúcelo. -2 V el compositories de la figura V el compositories



- Datos: $e = 1.6 \times 10^{-19} C$, $h = 6.6 \times 10^{-34} Js$. Sol: $V_f = \frac{h}{q} f \frac{hf_0}{q}$; 4.85 · $10^{14} Hz$; 4.125 · 10^{-15} 31) (C Sept06) Define el trabajo de extracción de los electrones de un metal cuando recibe radiación de los electrones de un metal cuando recibe radiación de los electrones de un metal cuando recibe radiación de los electrones de los ele
- electromagnética. Explica de qué magnitudes depende la energía máxima de los electrones emitidos en el efecto fotoeléctrico.


 32) (P Jun07) El trabajo de extracción de un metal es 3,3 eV. Calcula: 1. La velocidad máxima con la que
- son emitidos los electrones del metal cuando sobre su superficie incide un haz de luz cuya longitud de onda es $\lambda = 0.3 \ \mu m$. **2.** La frecuencia umbral y la longitud de onda correspondiente. Datos: $h = 6.6 \times 10^{34} \text{Js}$, $c = 3.0 \times 10^{8} \text{ m/s}$, $e = 1.6 \times 10^{-19} \text{ C}$, $m_e = 9.1 \times 10^{-31} \text{kg}$. Sol: 538618m/s; $8 \cdot 10^{14} \text{Hz}$; 375nm.
- 33) (C Jun07)¿Consideremos una partícula α y un protón que poseen la misma energía cinética, moviéndose ambos a velocidades mucho menores que las de la luz. ¿Qué relación existe entre la longitud de onda de De Broglie del protón y la de la partícula α ? Sol: 2

- **34)** (C Sept07) Un horno de microondas doméstico utiliza radiación de frecuencia 2,5x10³ MHz. La frecuencia de la luz violeta es 7,5x10³ MHz. ¿Cuántos fotones de microondas necesitamos para obtener la misma energía que con un solo fotón de luz violeta? Sol: 300000
- 35) (C Sept07) Un metal emite electrones por efecto fotoeléctrico cuando se ilumina con luz azul, pero no lo hace cuando la luz es amarilla. Sabiendo que la longitud de onda de la luz roja es mayor que la de la amarilla, ¿Qué ocurrirá al iluminar el metal con luz roja? Razona la respuesta. Sol : No efecto
- **36)** (C Sept07) Enuncia el principio de indeterminación de Heisenberg y comenta su significado físico.
- **37)** (C Jun08) Un virus de masa 10^{-18} g se mueve por la sangre con una velocidad de 0.1 m/s. ¿Puede tener una longitud de onda asociada? Si es así, calcula su valor. Dato: $h = 6.6 \cdot 10^{-34}$ Js. Sol: $6.6 \cdot 10^{-12}$ m
- **38)** (C Jun08) Define el trabajo de extracción en el efecto fotoeléctrico. Explica de qué magnitudes depende la energía máxima de los electrones emitidos.
- **39)** (P Sep08) El espectro de emisión del hidrógeno atómico presenta una serie de longitudes de onda discretas. La longitud de onda límite de mayor energía tiene el valor *91 nm*. **1**.¿Cuál es la energía de un fotón que tenga la longitud de onda límite expresada en *eV*? **2**. ¿Cuál sería la longitud de onda de De Broglie de un electrón que tuviera una energía cinética igual a la energía del fotón del apartado anterior? Datos en el SI: $h = 6.6 \cdot 10^{-34}$, $e = 1.6 \cdot 10^{-19}$, $m_e = 9.1 \cdot 10^{-31}$, $c = 3 \cdot 10^8$. Sol: 13,6eV, 3,32·10⁻¹⁰m.
- **40)** (P Jun09) Al incidir luz de longitud de onda λ =621,5 nm sobre la superficie de una fotocélula, los electrones de ésta son emitidos con una energía cinética de 0,14 eV. Calcula: **1.** El trabajo de extracción de la fotocélula. **2.** La frecuencia umbral. **3.** ¿Cuál será la energía cinética si la longitud de onda es λ_1 = λ /2? ¿y si la longitud de onda es λ_2 = 2λ ?. Datos: carga del electrón e=1,6·10⁻¹⁹ C; constante de Planck h=6,6·10³⁴ J·s; velocidad de la luz c=3·10⁸ m/s. Sol: 2,96·10⁻¹⁹ J; 4,49·10¹⁴Hz; 3,41·10⁻¹⁹ J.
- **41)** (P Sep09) Calcula la energía cinética y velocidad máximas de los electrones que se arrancan de una superficie de sodio cuyo trabajo de extracción vale W_o=2,28 eV, cuando se ilumina con luz de longitud de onda: 1) 410 nm. 2) 560 nm. Datos: c=3,0·10⁸m/s, e=1,6·10⁻¹⁹C, h=6,6·10⁻³⁴J·s, m_e=9,1·10⁻³¹kg Sol: 1) 1,18·10–19J, 509259m/s; 2) No efecto.
- **42)** (C Sep09, Jul 13) Enuncia la hipótesis de De Broglie . Menciona un experimento que confirme la hipótesis de De Broglie justificando la respuesta.
- **43)** (C Jun10) Si se duplica la frecuencia de la radiación que incide sobre un metal ¿se duplica la energía cinética de los electrones extraídos? Justifica brevemente la respuesta. Sol: No
- **44)** (C Jun10) Calcula la longitud de onda de De Broglie de una pelota de 500 g que se mueve a 2 m/s y explica su significado. ¿Sería posible observar la difracción de dicha onda? Justifica la respuesta. Dato: Constante de Planck h = 6.63·10⁻³⁴ J·s Sol: 6.63·10⁻³⁴ m, No
- **45)** (C Jun10) Calcula la longitud de onda de una línea espectral correspondiente a una transición entre dos niveles electrónicos cuya diferencia de energía es de 2 eV. Datos: constante de Planck h = 6,63·10⁻³⁴ J·s, carga del electrón e = 1,6·10⁻¹⁹ C, velocidad de la luz c = 3·10⁸ m/s. Sol: 621,56nm.
- **46)** (C Sep10) Se quiere diseñar un sistema de diagnóstico por rayos X y se ha establecido que la longitud de onda óptima de la radiación sería de 1 nm. ¿Cuál ha de ser la diferencia de potencial entre el ánodo y el cátodo de nuestro sistema? Datos: carga del electrón e=1,6·10⁻¹⁹ C. Constante de Planck h=6,63·10⁻³⁴J·s: velocidad de la luz c=3·10⁸m/s. Sol: 1243v.
- **47)** (P Sep10) Una célula fotoeléctrica se ilumina con luz monocromática de 250 nm. Para anular la fotocorriente producida es necesario aplicar una diferencia de potencial de 2 voltios. Calcula: a) La longitud de onda máxima de la radiación incidente para que se produzca el efecto fotoeléctrico en el metal. b) El trabajo de extracción del metal en electrón-volt. Datos:constante de Planck h=6,63·10⁻³⁴J·s, carga del electrón e = 1,6·10⁻¹⁹ C: velocidad de la luz c = 3·10⁸m/s. Sol: 418,21nm; 2,97eV.
- **48)** (Č Jun11) Si la longitud de onda asociada a un protón es de 0,1 nm, calcula su velocidad y su energía cinética. Datos: constante de Planck h=6,63·10⁻³⁴J·s, masa del protón, $m_p=1,67\cdot10^{-27}$ kg. Sol: 3970m/s; 1,32·10⁻²⁰J
- **49)** (P Jun11) En un experimento de efecto fotoeléctrico, cuando la luz que incide sobre un determinado metal tiene una longitud de onda de 550 nm, el módulo de la velocidad máxima con la que salen emitidos los electrones es de 2,96·10⁵ m/s. **1.** Calcula la energía de los fotones, la energía cinética máxima de los electrones y la función trabajo del metal (todas las energías en electronvolt) **2.** Calcula la longitud de onda umbral del metal. **3.** Representa gráficamente la energía cinética máxima de los electrones en función de la frecuencia de los fotones, indicando el significado de la pendiente y de los cortes con los ejes. Datos: Carga elemental e = 1,6·10⁻¹⁹C ; masa del electrón m_e = 9,1·10⁻³¹ kg ; velocidad de la luz c=3.10⁸m/s ; constante de Planck h = 6,63.10⁻³⁴ J.s
 - Sol: 1) 2,26eV, 0,2475eV, 2.01eV; 2) 617,62nm.
- **50)** (C Sep11) Escribe la expresión del principio de incertidumbre de Heisenberg. Explica lo que significa cada término de dicha expresión.

- **51)** (C Sep11) La longitud de onda de De Broglie de un electrón coincide con la de un fotón cuya energía (en el vacío) es de 10^8 eV. Calcula la longitud de onda del electrón y su energía cinética expresada en eV. Datos: Constante de Planck h = $6,63\cdot10^{-34}$ J·s ; velocidad de la luz en el vacío c = $3\cdot10^8$ m/s ; masa del electrón m_e = $9,1\cdot10^{-31}$ kg ; carga elemental e = $1,6\cdot10^{-19}$ C. Sol: $1,2410^{-14}$ m; $9,77\cdot10^9$ eV.
- **52)** (C Jun12) Un haz de luz tiene una longitud de onda de 550 nm y una intensidad luminosa de 10 W/m². Sabiendo que la intensidad luminosa es la potencia por unidad de superficie, calcula el número de fotones por segundo y metro cuadrado que constituyen ese haz. Realiza primero el cálculo teórico, justificándolo brevemente, y después el cálculo numérico. Datos: Constante de Planck, h = 6,63·10⁻³⁴ J·s; velocidad de la luz, c = 3·10⁸ m/s. Sol: 2,76·10¹⁹ fotones.
- **53)** (P Jun12) Considera una partícula α y un protón con la misma longitud de onda asociada de De Broglie. Supón que ambas partículas se mueven a velocidades cercanas a la velocidad de la luz. Calcula la relación que existe entre: a) Las velocidades de ambas partículas, b) Las energías totales de ambas partículas. Una vez realizado el cálculo teórico, sustituye para el caso en el que la velocidad del protón sea 0.4c. Sol: 4: 0.27
- **54)** (C Sep12) Uno de los procesos que tiene lugar en la capa de ozono de la estratosfera es la rotura del enlace de la molécula de oxigeno por la radiación ultravioleta del sol. Para que este proceso tenga lugar hay que aportar a cada molécula 5 eV. Calcula la longitud de onda mínima que debe tener la radiación incidente para que esto suceda. Explica brevemente tus razonamientos.
 - Datos: Constante de Planck $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$; velocidad de la luz en el vacío $c = 3 \cdot 10^8 \text{ m/s}$; carga elemental $e = 1,6 \cdot 10^{-19} \text{ C}$.
- 55) (P Sep12) El cátodo de una célula fotoeléctrica tiene una longitud de onda umbral de 542 nm. Sobre su superficie incide un haz de luz de longitud de onda 160 nm. Calcula: a) La velocidad máxima de los fotoelectrones emitidos desde el cátodo. b) La diferencia de potencial que hay que aplicar para anular la corriente producida en la fotocélula. Datos: Constante de Planck, h = 6,63.10⁻³⁴ J.s: masa del electrón. m_e = 9,1.10 ³¹ kg; velocidad de la luz en el vacío c = 3.1 0⁸ m/s; carga elemental e = 1.6-1 0⁻¹⁹ C Sol: 1,38·10⁶ m/s; 5,39v
- **56)** (C Jun13) En la gráfica adjunta se representa la energía cinética máxima de los electrones emitidos por un metal en función de la frecuencia de la luz incidente sobre él ¿Cómo se denomina el fenómeno físico al que se refiere la gráfica? Indica la frecuencia umbral del metal ¿Qué ocurre si sobre el metal incide luz de longitud de onda 0,6 μm? Datos: constante de Planck, h = 6,63·10⁻³⁴ J·s; velocidad de la luz en el vacío, c = 3·10⁸ m/s; carga elemental, e=1,6·10⁻¹⁹ C. Sol: 10¹⁵Hz; No hay e.f.

- 57) (C Jun14) Se quiere realizar un experimento de difracción utilizando un haz de electrones, y se sabe que la longitud de onda de De Broglie óptima de los electrones sería de 1nm. Calcula la cantidad de movimiento y la energía cinética (no relativista), expresada en eV, que deben tener los electrones. Datos: Constante de Planck, h = 6,63.10⁻³⁴ J.s: masa del electrón: m_e = 9,1.10⁻³¹ kg; velocidad de la luz en el vacío c = 3.10⁸ m/s; carga elemental e = 1.6-10⁻¹⁹ C. Sol: 6,63·10⁻²⁵ Kg·m/s; 1,51eV
- 58) (P Jun14) En un experimento de efecto fotoeléctrico, la luz incide sobre un cátodo que puede ser de cerio (Ce) o de niobio (Nb). Al representar la energía cinética máxima de los electrones frente a la frecuencia f de la luz, se obtienen las rectas mostradas en la figura. Responde razonadamente para qué metal se tiene: a) El mayor trabajo de extracción de electrones. Calcula su valor. b) El mayor valor de la energía cinética máxima de los electrones si la frecuencia de la luz incidente es 20·10¹⁴Hz, en ambos casos. Calcula su valor. Dato: constante de Planck, h = 6,63.10⁻³⁴ J.s

