1. Calcule a para que las siguientes funciones:

$$f(x) = \frac{\text{sen ax}}{x}$$

$$g(x) = \frac{\cos^2 x - \frac{1}{2}}{x^2}$$

 $g(x) = \frac{\cos^2 x - 1}{x^2}$ tengan el mismo límite en el punto 0.

SOLUCIÓN

Calculamos cada límite:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\text{sen ax}}{x} = \frac{0}{0} \qquad \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x \to 0} \frac{\text{sen ax}}{x} = \lim_{x \to 0} \frac{a \cos ax}{1} = a$$

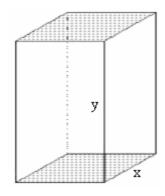
$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\cos^2 x - 1}{x^2} = \frac{0}{0} \qquad \xrightarrow{\text{Aplicando L'Hopital}} \qquad \lim_{x \to 0} \frac{\cos^2 x - 1}{x^2} = \lim_{x \to 0} \frac{-2 \cos x \text{sen } x}{2x} = \lim_{x \to 0} \frac{-\sin 2x}{2x} = \frac{0}{0}$$

$$\xrightarrow{\text{Aplicando L'Hopital}} \qquad \lim_{x \to 0} \frac{-2 \cos 2x}{2} = -1$$

Para que los dos límites sean iguales debe verificarse que a = -1.

2. El perímetro de una cara lateral de un prisma recto de base cuadrada es de 60 centímetros. Calcule sus dimensiones de forma que su volumen sea máximo.

SOLUCIÓN



Volumen = área base
$$\cdot$$
 altura $\rightarrow V = x^2 \cdot y$

Perímetro de una cara lateral = $60 \rightarrow 2x + 2y = 60 \rightarrow x + y = 30$

Expresamos una de las variables en función de la otra: y = 30 - x

La función a maximizar es : $V(x) = x^2 \cdot (30 - x) = 30x^2 - x^3$

$$V'(x) = 60x - 3x^2$$

$$V'(x) = 0 \rightarrow 20x - x^2 = 0 \rightarrow x = 0, x = 20$$

$$V''(x) = 60 - 6x \rightarrow V''(20) = 60 - 120 < 0$$

Descartamos el valor x = 0 porque no se tendría prisma.

Aplicando el criterio de la segunda derivada, si V''(20) < 0, la función presenta un máximo en x = 20. Por tanto, las dimensiones del prisma son base cuadrada de 20 cm y altura 10 cm.

1. Sea la función $f: R \rightarrow R$ definida por

$$f(x) = \begin{cases} 4 & \text{si } x = 0 \\ \frac{4(e^x - 1)}{x} & \text{si } x \neq 0 \end{cases}$$

Usando la definición de derivada, demuestra si la función f es derivable en x = 0

SOLUCIÓN

La función es derivable en x = 0 si se verifica que existe $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{4(e^x - 1)}{x} - 4}{x} = \lim_{x \to 0} \frac{4(e^x - 1) - 4x}{x^2} = \lim_{x \to 0} \frac{4(e^x - x - 1)}{x^2} = \frac{0}{0} \xrightarrow{\text{L'Hôpital}}$$

$$\lim_{x\to 0} \frac{4\left(e^x-1\right)}{2x} = \frac{0}{0} \xrightarrow{\text{L'Hôpital}} \lim_{x\to 0} \frac{4e^x}{2} = 2.$$

2. Calcule:

$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$$

SOLUCIÓN

$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right) = \infty - \infty \qquad \rightarrow \quad \lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{\ln x - x + 1}{(x-1)\ln x} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}}$$

$$\lim_{x \to 1} \frac{\ln x - x + 1}{(x - 1) \ln x} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{\ln x + \frac{x - 1}{x}} = \lim_{x \to 1} \frac{1 - x}{x \ln x + x - 1} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x \to 1} \frac{-1}{\ln x + x \cdot \frac{1}{x} + 1} = \lim_{x \to 1} \frac{-1}{\ln x + 2} = -\frac{1}{2}$$

JUNIO 2012 ESPECÍFICA

- 1. Se considera la curva: $y = \frac{1}{1+x^2}$
 - a) Halle el punto de la curva en el que la recta tangente a su gráfica tiene pendiente máxima.
 - b) Calcule el valor de esa pendiente.

SOLUCIÓN

 a) La pendiente de la recta tangente a su gráfica en un punto x = a viene dada por la derivada de la función en x = a (f´(a)).

Si
$$f(x) = y = \frac{1}{1+x^2} \rightarrow f'(x) = -\frac{2x}{(1+x^2)^2}$$

Para determinar la pendiente máxima derivamos f'(x)

$$f''(x) = \frac{-2(1+x^2)^{2/2} + 2x \cdot 2(1+x^2) \cdot 2x}{(1+x^2)^{4/3}} = \frac{6x^2 - 2}{(1+x^2)^3} \rightarrow f''(x) = 0 \text{ si } 3x^2 - 1 = 0 \rightarrow x = \pm \frac{\sqrt{3}}{3}$$

Estudiamos el signo de f" para determinar el máximo:

$$f~\text{``(x)} > 0~\text{si } x < -\frac{\sqrt{3}}{3}~\text{y } x > \frac{\sqrt{3}}{3}$$

$$f~\text{``(x)} < 0~\text{si } -\frac{\sqrt{3}}{3} < x < \frac{\sqrt{3}}{3}$$

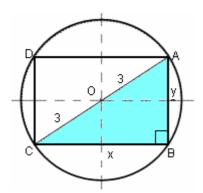
$$\rightarrow x = -\frac{\sqrt{3}}{3}~\text{es un máximo} \rightarrow \text{Punto:} \left(-\frac{\sqrt{3}}{3}, \frac{3}{4}\right)$$

b) El valor de la pendiente es:

$$f\left(-\frac{\sqrt{3}}{3}\right) = -\frac{2\left(-\frac{\sqrt{3}}{3}\right)}{\left[1 + \left(-\frac{\sqrt{3}}{3}\right)^2\right]^2} = \frac{\frac{2\sqrt{3}}{3}}{\left(1 + \frac{1}{3}\right)^2} = \frac{\frac{2\sqrt{3}}{3}}{\frac{16}{9}} = \frac{3\sqrt{3}}{8}$$

1. Halle el rectángulo de mayor área inscrito en una circunferencia de radio 3.

SOLUCIÓN



Sean x e y las dimensiones del rectángulo.

Área del rectángulo: $A = x \cdot y$

El triángulo ABC es rectángulo, sus lados miden x, y y 6, por tanto, se verifica que:

$$6^2 = x^2 + y^2 \rightarrow y = \sqrt{36 - x^2}$$

Luego, el área es A(x) =
$$x \cdot \sqrt{36 - x^2}$$

Para que su área sea máxima su primera derivada tiene que ser cero:

$$A'(x) = \sqrt{36 - x^2} + \frac{-\cancel{2}x^2}{\cancel{2}\sqrt{36 - x^2}} = \frac{36 - 2x^2}{\sqrt{36 - x^2}} = 0 \text{ si } 36 - 2x^2 = 0 \rightarrow x = +\sqrt{18} = 3\sqrt{2}$$

Descartada la solución negativa por ser x una longitud.

Por tanto, el rectángulo de mayor área es el cuadrado de lado $3\sqrt{2}$ unidades.

2. Halle una función polinómica de tercer grado $y = ax^3 + bx^2 + cx + d$ tal que tenga un mínimo en el punto (1,1) y un punto de inflexión en el punto (0,3).

SOLUCIÓN

La curva pasa por el punto (1,1), por tanto, se verifica que y(1) = 1: a + b + c + d = 1 (1)

La curva pasa por el punto (0,3), por tanto, se verifica que y(0) = 3: d = 3.

La función tiene un mínimo en x = 1, por tanto, se verifica que y'(1) = 0:

$$y' = 3ax^2 + 2bx + c \rightarrow y'(1) = 3a + 2b + c = 0$$
 (2)

La función tiene un punto de inflexión en x = 0, por tanto, se verifica que y''(0) = 0:

$$y'' = 6ax + 2b \rightarrow y''(0) = b = 0 \rightarrow b = 0$$

Sustituyendo los valores de d y b en las ecuaciones (1) y (2), obtenemos el siguiente sistema:

$$3a+c+3=1 \\ 3a+c=0 \\ \rightarrow 3a+c=0 \\ \rightarrow 2a=2 \\ \rightarrow a=1 \\ \rightarrow c=-3$$

Por tanto, la función es $y = x^3 - 3x + 3$

1. Dada la curva:

$$f(x) = \frac{x^3}{3} - \frac{3x^2}{2} + 2x$$

- a) Obtenga sus máximos, mínimos y puntos de inflexión.
- b) Encuentre los intervalos de crecimiento y decrecimiento.

SOLUCIÓN

a) Para determinar los extremos relativos imponemos que f'(x) = 0:

$$f'(x) = x^2 - 3x + 2 = 0 \rightarrow (x - 2)(x - 1) = 0 \rightarrow x = 2, x = 1$$

Aplicando el criterio de la segunda derivada, determinamos si son máximos o mínimos:

$$f''(x) = 2x - 3 \rightarrow f''(2) = 1 > 0 \rightarrow La$$
 función tiene un mínimo en $x = 2$

$$\rightarrow$$
 f ''(1) = 1< 0 \rightarrow La función tiene un máximo en x = 1

Para determinar los puntos de inflexión imponemos que f ''(x) = 0:

$$f \ ^{\prime\prime}(x) = 2x - 3 = 0 \ \text{ si } x = \frac{3}{2} \ \rightarrow \text{La función tiene un punto de inflexión en } x = \frac{3}{2} \ \text{ya que } f \ ^{\prime\prime\prime}(x) = 2 \ \neq 0$$

b) f'(x) =
$$x^2 - 3x + 2 = 0 \rightarrow (x - 2)(x - 1) = 0 \rightarrow x = 2$$
, x = 1

Estudiamos el signo de la derivada en los siguientes intervalos:

- o $(-\infty,1)$: f'(x) > 0 ya que para x = 0 f'(0) > 0 \rightarrow f creciente
- o (1,2): f'(x) < 0 ya que para x = 1,5 f'(1,5) < 0 \rightarrow f decreciente
- o $(2,+\infty)$: f'(x) > 0 ya que para x = 3 f'(3) > 0 \rightarrow f creciente

2. Calcule:

a)
$$\lim_{x\to 1} \frac{1-\cos(x-1)}{(\ln x)^2}$$

b)
$$\lim_{x\to 0} (x^4 + e^x)^{\frac{1}{x}}$$

SOLUCIÓN

$$a) \lim_{x \to 1} \frac{1 - \cos{(x - 1)}}{\left(\text{Ln}\,x\right)^2} = \frac{0}{0} \xrightarrow{\text{L'Hôpital}} \lim_{x \to 1} \frac{1 - \cos{(x - 1)}}{\left(\text{Ln}\,x\right)^2} = \lim_{x \to 1} \frac{\sin{(x - 1)}}{2\text{Ln}\,x} = \lim_{x \to 1} \frac{x \cdot \sin{(x - 1)}}{2\text{Ln}\,x} = \frac{0}{0} \xrightarrow{\text{L'Hôpital}}$$

$$\lim_{x \to 1} \frac{\text{sen}(x-1) + x\cos(x-1)}{2 \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{x\text{sen}(x-1) + x^2\cos(x-1)}{2} = \frac{1}{2}$$

b)
$$\lim_{x\to 0} (x^4 + e^x)^{\frac{1}{x}} \to 1^{\infty}$$

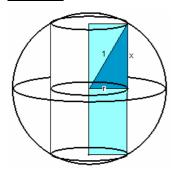
Aplicamos $\lim_{x\to 0} f(x)^{g(x)} = \lim_{x\to 0} e^{\lim_{x\to 0} [f(x)-1]\cdot g(x)}$

$$\lim_{x \to 0} [f(x) - 1] \cdot g(x) = \lim_{x \to 0} (x^4 + e^x - 1) \cdot \frac{1}{x} = \lim_{x \to 0} \frac{x^4 + e^x - 1}{x} = \frac{0}{0} \xrightarrow{\text{$L'H\"{o}pital}$} \lim_{x \to 0} \frac{x^4 + e^x - 1}{x} = \lim_{x \to 0} \frac{4x^3 + e^x}{1} = 1$$

Por tanto,
$$\lim_{x\to 0} (x^4 + e^x)^{\frac{1}{x}} = e^x$$

3. De todos los cilindros inscritos en una esfera de radio 1 metro, halle el volumen del que lo tenga máximo.

SOLUCIÓN



Volumen de un cilindro: $V = \pi \cdot r^2 \cdot h$, siendo

r = radio del circulo base h = altura del cilindro

El cilindro está inscrito en una esfera de radio 1, por tanto, según el dibujo, se verifica:

$$1^2 = r^2 + x^2$$
, siendo $2x = h$.

Si $r = \sqrt{1 - x^2}$ y 2x = h, el volumen del cilindro es:

$$V(x) = \pi \cdot \left(\sqrt{1 - x^2}\right)^2 \cdot 2x = \pi \cdot 2x(1 - x^2) = \pi \cdot (2x - 2x^3)$$

Derivando:
$$V'(x) = \pi \cdot (2 - 6x^2) \rightarrow V'(x) = 0$$
: $2 - 6x^2 = 0 \rightarrow x = \frac{\sqrt{3}}{3}$

$$V''(x) = -12x \rightarrow V''\left(\frac{\sqrt{3}}{3}\right) < 0 \rightarrow x = \frac{\sqrt{3}}{3}$$
 máximo

Por tanto, el cilindro de mayor volumen tiene altura $h=2x=\frac{2\sqrt{3}}{3}$ y radio $r=\sqrt{1-x^2}=\sqrt{1-\frac{1}{3}}=\sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{3}$.

1. Sabiendo que el $\lim_{x\to 0} \frac{3x - m \operatorname{sen} x}{x^2}$ es finito, calcule el valor de m y halle el límite.

SOLUCIÓN

$$\lim_{x \to 0} \frac{3x - m \, \text{sen} \, x}{x^2} = \frac{0}{0} \quad \forall \, \, m \in \mathbb{R} \quad \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x \to 0} \frac{3 - m \cos x}{2x} = \frac{3 - m}{0}$$

Para que el límite sea finito, imponemos que $3 - m = 0 \rightarrow m = 3$

Resolvemos el límite si m = 3:

$$\lim_{x\to 0} \frac{3-3\cos x}{2x} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x\to 0} \frac{3\text{sen }x}{2} = 0$$

2. Sea f: $\mathbb{R} \longrightarrow \mathbb{R}$ la función definida por:

$$f(x) = \begin{cases} x^3 - x^2 & \sin x \le 1 \\ x - 1 & \sin x > 1 \end{cases}$$

b) Halle los extremos de la función

SOLUCIÓN

$$f(x) = \begin{cases} x^3 - x^2 & \text{si } x \le 1 \\ x - 1 & \text{si } x > 1 \end{cases} \rightarrow f'(x) = \begin{cases} 3x^2 - 2x & \text{si } x \le 1 \\ 1 & \text{si } x > 1 \end{cases} \rightarrow f''(x) = \begin{cases} 6x - 2 & \text{si } x \le 1 \\ 0 & \text{si } x > 1 \end{cases}$$

Para determinar los extremos imponemos que f '(x) = 0: $3x^2 - 2x = 0 \rightarrow x = 0$, $x = \frac{2}{3}$

Para determinar si los extremos son máximos o mínimos, aplicamos el criterio de la segunda derivada:

 $f''(0) = -2 < 0 \rightarrow f$ presenta un máximo en $x = 0 \rightarrow (0,0)$ máximo

$$f''\left(\frac{2}{3}\right) = 2 > 0 \rightarrow f$$
 presenta un mínimo en $x = \frac{2}{3} \rightarrow \left(\frac{2}{3}, -\frac{4}{27}\right)$ mínimo

1. Una ventana rectangular tiene un perímetro de 12 metros. Calcule las dimensiones de los lados del rectángulo para que el área de la ventana sea máxima.

SOLUCIÓN

Área ventana: $A = x \cdot y$, siendo x = base, y = altura

Perímetro rectángulo = 12 \rightarrow 2x + 2y = 12 \rightarrow x + y = 6 \rightarrow y = 6 - x

Área ventana: $A(x) = x \cdot (6 - x) = 6x - x^2$

Para determinar el área máxima, imponemos que A'(x) = 0:

$$A'(x) = 6 - 2x = 0 \rightarrow x = 3$$

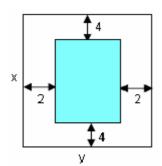
Comprobamos que x = 3 es un máximo, para ello aplicamos el criterio de la segunda derivada:

A''(x) = -2 < 0
$$\rightarrow$$
 x = 3 es un máximo.

Las dimensiones del rectángulo son: $x = 3 \rightarrow y = 6 - 3 = 3$, es decir, un cuadrado de lado 3 m.

1. Se desea diseñar un libro de forma que cada página tenga 600 cm² de área. Sabiendo que los márgenes superior e inferior son de 4cm cada uno y los laterales de 2cm, calcule las dimensiones de cada página para que el área impresa se máxima.

SOLUCIÓN



Alto de la página impresa: x – 8

Ancho de la página impresa: y - 4

Área impresa: A = (x - 8)(y - 4)

Área página:
$$x \cdot y = 600 \rightarrow y = \frac{600}{x}$$

Área impresa: A(x) =
$$(x-8)\left(\frac{600}{x}-4\right)$$
 = $632-4x-\frac{4800}{x}$

Para determinar el valor máximo, imponemos que A'(x) = 0:

$$A'(x) = -4 + \frac{4800}{x^2} = 0 \rightarrow A'(x) = \frac{4800 - 4x^2}{x^2} = 0 \rightarrow 1200 - x^2 = 0 \rightarrow x = 20\sqrt{3}$$

$$\text{A''}(x) = -2 \cdot \frac{4800}{x^3} < 0 \ \forall \ x > 0 \ \rightarrow \ \text{A''}\Big(20\sqrt{3}\Big) < 0 \ \rightarrow x = \ 20\sqrt{3} \ \text{máximo, siendo} \ y = \frac{600}{20\sqrt{3}} = 10\sqrt{3}$$

2. Calcula:

$$\lim_{x\to 0^+} \left(\frac{1}{x^2}\right)^{\tan(x)}$$

Tan(x) = función tangente de x

SOLUCIÓN

$$\lim_{x \to 0^+} \left(\frac{1}{x^2}\right)^{\tan(x)} = \infty^0 \qquad \longrightarrow \qquad \lim_{x \to 0^+} \tan(x) \cdot \ln\left(\frac{1}{x^2}\right) = 0 \cdot \infty$$

$$\lim_{x \to 0^+} \tan(x) \cdot \ln\left(\frac{1}{x^2}\right) = \lim_{x \to 0^+} \tan(x) \cdot (-2\ln x) = \lim_{x \to 0^+} -\frac{2\ln x}{\cos x} = \frac{\infty}{\infty}$$
 (1) $\ln\left(\frac{1}{x^2}\right) = \ln 1 - \ln x^2 = -2\ln x$

Aplicando L'Hôpital:
$$\lim_{x \to 0^+} -\frac{2 \ln x}{\frac{\cos x}{\sec x}} = \lim_{x \to 0^+} \frac{-2/x}{\frac{-\sec^2 x - \cos^2 x}{\sec^2 x}} = \lim_{x \to 0^+} \frac{2 \text{sen}^2 x}{x} \to \frac{0}{0} \xrightarrow{\text{L'Hôpital}} \lim_{x \to 0^+} \frac{4 \text{sen } x \cdot \cos x}{1} = 0$$

Por tanto,
$$\lim_{x\to 0^+} \left(\frac{1}{x^2}\right)^{\tan(x)} = e^0 = 1$$

1. La hipotenusa de un triángulo rectángulo mide 10 cm. Halle las dimensiones de los catetos de forma que el área del triángulo sea máxima.

SOLUCIÓN

Área del triángulo: $A = \frac{1}{2} \cdot x \cdot y$ siendo x e y los catetos del triángulo rectángulo.

La hipotenusa mide 10 cm, por tanto, se verifica: $10^2 = x^2 + y^2 \rightarrow y = \sqrt{100 - x^2}$

La función área es A(x) =
$$\frac{x \cdot \sqrt{100 - x^2}}{2}$$
.

Para determinar el valor máximo, calculamos la primera derivada e igualamos a cero:

$$A'(x) = \frac{1}{2} \cdot \left[\sqrt{100 - x^2} + \frac{-\cancel{2}x^2}{\cancel{2}\sqrt{100 - x^2}} \right] = \frac{1}{2} \cdot \frac{100 - 2x^2}{\sqrt{100 - x^2}} = \frac{50 - x^2}{\sqrt{100 - x^2}} = 0 \rightarrow 50 - x^2 = 0 \rightarrow x = \pm \sqrt{50} = \pm 5\sqrt{2}$$

$$x = 5\sqrt{2}$$
 (descartamos el valor negativo) $\rightarrow y = \sqrt{100 - 50} = 5\sqrt{2}$

Comprobamos que es un máximo de la función empleando el criterio de la segunda derivada:

$$A''(x) = \frac{-2x \cdot \sqrt{100 - x^2} - \left(50 - x^2\right) \cdot \frac{-\cancel{2}x}{\cancel{2}\sqrt{100 - x^2}}}{100 - x^2} = \frac{-2x \cdot \left(100 - x^2\right) + \left(50x - x^3\right)}{\left(100 - x^2\right) \cdot \sqrt{100 - x^2}} = \frac{x^3 - 150x}{\left(100 - x^2\right) \cdot \sqrt{100 - x^2}}$$

$$A''\left(5\sqrt{2}\right) = \frac{5\sqrt{2}\cdot(50-150)}{50\cdot\sqrt{50}} = \frac{5\sqrt{2}\cdot(-100)}{50\cdot5\sqrt{2}} = -2 < 0$$

Por tanto, el triángulo de área máxima es un triángulo rectángulo isósceles de catetos $5\sqrt{2}\,$ cm.

2. Se considera la función:

$$f(x) = \begin{cases} x \ln x & \text{si } x > 0 \\ ax^2 + bx + c & \text{si } x \le 0 \end{cases}$$

Determine los valores de a, b y c para que la función sea continua, tenga un máximo en x = -1 y la tangente en x = -2 sea paralela a la recta y = 2x.

<u>SOLUCIÓN</u>

Imponemos que f sea continua en x = 0: $\lim_{x \to 0} f(x) = f(0)$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0} \left(x \ln x\right) = 0 \cdot \infty \to \lim_{x\to 0} \left(x \ln x\right) = \lim_{x\to 0} \frac{\ln x}{1/x} = \frac{\infty}{\infty} \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x\to 0} \frac{1/x}{-1/x^2} = \lim_{x\to 0} \left(-x\right) = 0$$

$$f(0) = c \to \boxed{c = 0}$$

La función tiene un máximo en $x = -1 \rightarrow f'(-1) = 0$

$$f'(x) = \begin{cases} 1 + \ln x & \text{si } x > 0 \\ 2ax + b & \text{si } x \le 0 \end{cases} \to f'(-1) = -2a + b = 0 \to b = 2a$$

La tangente en x = -2 es paralela a y = 2x \rightarrow f '(-2) = 2 \rightarrow -4a + b = 2 \rightarrow -2a = 2 \rightarrow a = -1 \rightarrow b = -2

1. Se considera la curva: $y = \frac{x^2}{1+x}$. Halle, si existen, los máximos, mínimos y puntos de inflexión.

SOLUCIÓN

Para determinar los extremos relativos imponemos que f'(x) = 0:

$$y' = \frac{2x \cdot (1+x) - x^2}{(1+x)^2} = \frac{2x + x^2}{(1+x)^2} = 0 \rightarrow x = 0$$
, $x = -2$

$$y'' = \frac{(2+2x)\cdot(1+x)^2 - (2x+x^2)\cdot 2\cdot(1+x)}{(1+x)^4} = \frac{2(\cancel{1+x})\cdot(1+x)^2 - 2(2x+x^2)\cdot(\cancel{1+x})}{(1+x)^{\cancel{4}3}} = \frac{2}{(1+x)^3}$$

$$y''(0) = 2 > 0 \rightarrow (0,0) \text{ mínimo}$$

$$y''(-2) = -2 < 0 \rightarrow (-2,-4) \text{ máximo}$$

Para determinar los puntos de inflexión imponemos que f ''(x) = 0, pero no se anula para ningún valor, por tanto, no existen.

- 1. Dada la función $y = 5xe^{x-1}$
- a) Calcule los intervalos de crecimiento y decrecimiento de la función.
- b) Halle, si existen, los máximos, mínimos y puntos de inflexión.

SOLUCIÓN

Para estudiar el crecimiento de la función, determinamos f'(x):

$$f'(x) = 5e^{x-1} + 5xe^{x-1} = 5e^{x-1}(1+x) = 0 \rightarrow x = -1$$

$$f'(x) > 0$$
 si $x > -1 \rightarrow f$ creciente en $(-1, +\infty)$

f '(x) < 0 si x < -1
$$\rightarrow$$
 f decreciente en $(-\infty, -1)$

Según el criterio de la primera derivada, la función tiene un máximo en $\left(-1, -\frac{5}{e^2}\right)$.

Para determinar los puntos de inflexión de la función, calculamos f "(x):

$$f''(x) = 5 e^{x-1} (1+x) + 5 e^{x-1} = 5 e^{x-1} (2+x) = 0 \text{ si } x = -2$$

Estudiando el signo de la segunda derivada:

Si
$$x > -2 \rightarrow f''(x) > 0 \rightarrow f$$
 cóncava

Si x <-2
$$\rightarrow$$
 f ''(x) < 0 \rightarrow f cónvexa

Por tanto, la función tiene un punto de inflexión en $\left(-2, -\frac{10}{e^3}\right)$