

b) Estudiar analíticamente su posible simetría.

$$F(-x) = \frac{(-x)^2 + 5}{-x - 2} = \frac{x^2 + 5}{x + 2} \neq \pm F(x) \implies F(x) \text{ as es sinchica}$$

$$Par \text{ as impar}$$

$$0.5/$$

c) Calcular sus posibles cortes con los ejes.

cork eye y:
$$y=0 \Rightarrow \frac{x^2+5}{x-2}=0$$
; $x^2+5=0$ [O₁-5/2]

cork eye y: $x=0 \Rightarrow y=-\frac{5}{2} \Rightarrow (O_1-5/2)$]

0.5/

d) Tabla de valores apropiada y representación gráfica.

																								0		
	×	-0010010	-9	-8	-7	-6	-5	-4	-3	-2	14	0	1	2	3	4	5.	6	7	8	9	10.	10	0		
3=	x+5 5-x	-098,998,75	-h82	-6,9	-6	-5,12	-4,28	-45	-48	-2,25	-2.	25	-6	A	ly i	0,5	0	n U	10,8	195	1418	13,12	101	,09		
	e) Intervalos de crecimiento. Posibles M y m.								M					Û.			se !	buja 0,25 por coder folor incorrecto								
	1			. 1		,1				- min	1											Falo	د الاحم	MEC.		

$$F(x) \neq \forall x \in (-20,-1) \cup (5,0)$$
 $\Rightarrow M(-1,-2) = 0.25/$
 $f(x) \neq \forall x \in (-1,5) - \{1\}_{0,25/} \Rightarrow M(5,10) = 0.25/$

Indicar su continuidad.

h) Ecuación de las posibles asíntotas horizontales y/o verticales.

i)
$$\lim_{x \to -\infty} f(x) = -\infty$$
 | 0.5 $\lim_{x \to -\infty} f(x) = \infty$ | 0.5

i) Hallar analíticamente la antiimagen de y=-6

Hallar analíticamente la antiimagen de y=-6
$$\frac{x^2+5}{x-2}=-6; \quad x^2+5=-6\times+12; \quad x^2+6\times-7=0$$

$$|x=1|$$

(work: preder comprobuse en la toble ambar; también puede observasse grésicamente ...)

NOTA del indicador 6.1 (0 a 10)

¿Alcanza el mínimo? (Es mínimo la

Dada f(x) = |x| + |x-2| se pide:

a) Expresarla razonadamente como función definida por ramas

Expresaria razonadamente como función definida por ramas.

$$f(x) = |x| + |x-2| = \begin{cases} -x + (-x + 2) & \text{si } x \le 0 \\ 2 & \text{si } x \le 2 \end{cases}$$

$$f(x) = |x| + |x-2| = \begin{cases} -x + (-x + 2) & \text{si } x \le 0 \\ 2 & \text{si } x \le 2 \end{cases}$$

$$f(x) = |x| + |x-2| = \begin{cases} -x + (-x + 2) & \text{si } x \le 0 \\ 2 & \text{si } x \le 2 \end{cases}$$

$$f(x) = |x| + |x-2| = \begin{cases} -x + (-x + 2) & \text{si } x \le 0 \\ 2 & \text{si } x \le 2 \end{cases}$$

$$f(x) = |x| + |x-2| = \begin{cases} -x + (-x + 2) & \text{si } x \le 0 \\ 2 & \text{si } x \le 2 \end{cases}$$

$$f(x) = |x| + |x-2| = \begin{cases} -x + (-x + 2) & \text{si } x \le 0 \\ 2 & \text{si } x \le 2 \end{cases}$$

se baja 1 pto por no expresar tai ecusable de cada mater po de fext), o las numos as

b) Representarla gráficamente.

X	-1	0
9=-2x+2	4	2

×	2	3				
1-2x-1	ر	4				

NOTA del indicador 6.3 (0 a 10)

- ¿Alcanza el mínimo? (Es mínimo la representación gráfica de la función a trozos)

NOTA del indicador 6.4 (0 a 10)

¿Alcanza el mínimo? (No es mínimo redefinirla como función a trozos)

a) TEORÍA: Definir con palabras, y también mediante fórmula, el logaritmo en base a de un número. Indicar un

«El logaritmo en base a de m número es el exponente al que hay que elevar la base para obtener dicho número»: 11/

b) Aplicando la definición anterior (¡No mediante las fórmulas del cálculo logarítmico!), calcular (Indicación: transformar previamente el argumento del logaritmo) razonadamente:

$$\log_{5} \frac{1}{5\sqrt[3]{25}} = \log_{5} \frac{1}{5\sqrt[3]{5^{2}}} = \log_{5} \frac{1}{5\sqrt[3]{5^{2}}} = \log_{5} \frac{1}{5\sqrt[3]{3}}$$

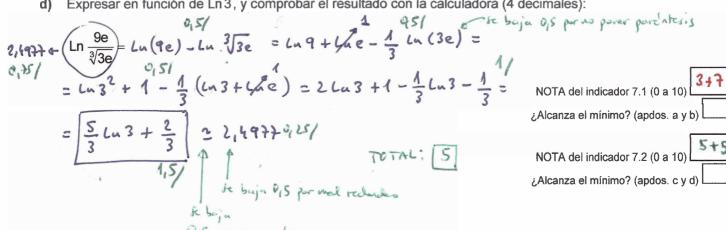
$$-5/3 = \boxed{-\frac{5}{3}}$$

c) Aplicando las fórmulas del cálculo logarítmico, calcular razonadamente el logaritmo anterior:

Aplicando las fórmulas del cálculo logarítmico, calcular razonadamente el logaritmo anterior:
$$\log_5 \frac{1}{5\sqrt[3]{25}} = 195 \frac{1}{3} - 105 \frac{1}{3} = 100 \frac{1}{3$$

terior:
$$\frac{1}{3}$$
 1.5 = -1 -

Expresar en función de Ln 3, y comprobar el resultado con la calculadora (4 decimales):



- ¿Alcanza el mínimo? (apdos. a y b)
- NOTA del indicador 7.2 (0 a 10) ¿Alcanza el mínimo? (apdos. c y d)

Resolver (en caso de tener solución no exacta, dar 4 decimales) y comprobar:

$$4^{x} - 14 \cdot 2^{x-1} + 12 = 0$$

$$(2^2)^{\times} - 14 \cdot \frac{2^{\times}}{2} + 12 = 0$$

$$(2^{x})^{2} - 7 \cdot 2^{x} + 12 = 0$$

cambio de vaniable
$$2^{\times} = t \implies t^{2} - 7t + 12 = 0$$

$$t^{2} - 7 \cdot 2^{\times} + 12 = 0$$

cambio de vaniable $2^{\times} = t \implies t^{2} - 7t + 12 = 0$

$$t^{2} - 7t + 12 = 0$$

$$x = 1.5850 \Rightarrow 4 \frac{1.5849...}{9} - 4 \frac{0.5849...}{12} + 12 = 0 1$$