PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON)

1.	¿Qué es la inercia? ¿Qué magnitud física nos proporciona una medida de la inercia de un cuerpo?				
2.	Cuando una fuerza actúa sobre un cuerpo puede producir dos efectos. ¿Cuáles son?				
3.	¿Puede experimentar aceleración un cuerpo sobre el que no actúa ninguna fuerza? ¿Por qué?				
4.	Un camión de 4000 kg de masa arranca. Sabiendo que el motor ejerce sobre el camión una fuerza de 10000 N, calcula: a) la aceleración b) el tiempo que tarda en alcanzar una velocidad de 15 m/s.				
	Sol.	a)	$2,5 \text{ m/s}^2$	b)	6 s
5.	Un coche de 1200 kg de masa se mueve con una velocidad de 20 m/s. En cierto instante, el conductor frena, aplicando al vehículo una fuerza de 2400 N hasta que éste se detiene. Calcula: a) la aceleración que experimenta el coche b) el tiempo que tarda en detenerse				
	Sol.	a)	-2 m/s ²	b)	10 s
6.	Un ve Calcul a) b)	la: la a	nceleración		sa arranca y alcanza una velocidad de 18 m/s al cabo de 9 s. notor sobre el vehículo.
	Sol.	a)	2 m/s^2	b)	30000 N
7.	Un coche de 1500 kg de masa que circula con una velocidad de 24 m/s frena, invirtiendo 8 s en detenerse. Calcula: a) la aceleración b) la fuerza ejercida por los frenos sobre el coche.				
	Sol.	a)	-3 m/s^2	b)	-4500 N
8.	Explic Newto		significado físico	o de	e los Principios Fundamentales de la Dinámica (Leyes de

SOLUCIONES

- 1. La inercia es la tendencia de todo cuerpo a permanecer en su estado de movimiento. La magnitud física que nos proporciona una medida de la inercia de un cuerpo es la masa.
- 2. Puede deformarlo y puede cambiar su estado de movimiento.
- 3. No, de acuerdo con el Segundo Principio Fundamental de la Dinámica, para que un cuerpo experimente una aceleración tiene que recibir la acción de una fuerza neta distinta de cero.
- 8. Ver Hoja de Teoría.

$$|\overline{A}| = 4000 \text{ kg}$$

$$\overline{F} = 40000 \text{ N}$$

c)
$$F = mc$$

$$a = \frac{F}{m} = \frac{10000}{4000} = \frac{2.5 \text{ m/s}^2}{1.5 \text{ m/s}^2}$$

b) a constante
$$\Rightarrow$$
 mRUA

 $v = v_0 + at$
 $v = v_0 + at$
 $v = v_0 = \frac{15 - a}{2.5} = \frac{6}{5}$

$$\frac{5}{4} = \frac{\sqrt{5}}{4} = \frac{1200 \text{ kg}}{\sqrt{5}} = \frac{1}{200 \text{ kg}} = \frac{1$$

F=ma
$$\alpha = \frac{F}{m} = \frac{-24ev}{12ev} = \frac{-2 m/sl}{1}$$

b)
$$v = v + at$$

$$v = v - v = 0 - 20$$

$$-2 = 101$$

$$\frac{U_0 = 0 \text{ m/s}}{U_0 + 16 \text{ m/s}}$$

$$\frac{U_0 = 0 \text{ m/s}}{U_0 + 16 \text{ m/s}}$$

$$\frac{U_0 = 0 \text{ m/s}}{U_0 + 16 \text{ m/s}}$$

$$\frac{U_0 = 0 \text{ m/s}}{U_0 + 16 \text{ m/s}}$$

a)
$$v=v_0+at$$
 $a=\frac{v-v_0}{4}=\frac{18-0}{9}=\frac{2}{2}m/i^2$

c)
$$c = c + c + c + c = c - 3 = -3 = -3 = -3$$