1. Funciones polinómicas elementales

Las **funciones polinómicas** de ecuación y = ax + b se clasifican por los coeficientes a y b:

- Funciones constantes: a = 0.
- Funciones lineales: $a \neq 0$ y b = 0.
- Funciones afines: $a \neq 0$ y $b \neq 0$.

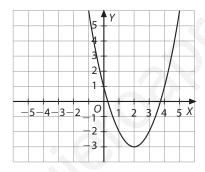
Las funciones **cuadráticas** son las que tienen de ecuación $y = ax^2 + bx + c$ con $a \ne 0$ y su dominio es el conjunto de los números reales, Dom = \mathbb{R} .

El **vértice** de la parábola $y = ax^2 + bx + c$ es el punto máximo de la función cuadrática si a < 0, y el punto mínimo, si a > 0.

Por ejemplo, para dibujar una parábola de ecuación $y = x^2 - 4x + 1$ se siguen estos pasos:

Se calcula el vértice, $V(x_0, y_0)$: $x_0 = -\frac{b}{2a} = \frac{-(-4)}{2 \cdot 1} = 2 \implies y_0 = 2^2 - 4 \cdot 2 + 1 = -3$, es decir, V(2, -3). La curva se dibuja a partir de una tabla de valores simétricos en torno al vértice.

Х	-1	0	1	2	3	4	5
у	6	1	-2	-3	-2	1	6



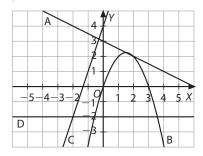
Relaciona las gráficas con sus correspondientes ecuaciones y halla, en cada caso, el valor de la ordenada para x = 0, es decir, el punto de corte con el eje Y.

a)
$$y = 3x - x^2$$

b)
$$y = -\frac{1}{2}x + 3$$

()
$$y = 3x + 4$$

d)
$$y = -2$$



- 2 Halla el vértice de la parábola de ecuación $y = x^2 + 4x 2$ y haz una tabla para luego representarla.
- Escribe la ecuación de una parábola si tiene su vértice en el punto (1, -2) y pasa por el origen de coordenadas.

Solucionario

1 *a*) *B*, el punto de corte es (0, 0).

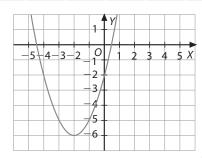
b) A, el punto de corte es (0, 3).

2 El vértice es (−2, −6).

c) C, el punto de corte es (0, 4).

d) D, el punto de corte es (0, -2).

Х	-5	-4	-3	-2	-1	0	1
у	3	-2	-5	-6	-5	-2	3



3 La ecuación es de la forma $y = ax^2 + bx + c$.

Como V(1, -2), resulta que $-\frac{b}{2a} = 1$, de donde 2a + b = 0.

Como pasa por el origen y por (1, -2), entonces, c = 0 y $-2 = a \cdot 1^2 + b \cdot 1$ es decir, a + b = -2. Por tanto, a = 2, b = -4, c = 0, y la ecuación pedida es $y = 2x^2 - 4x$.