1. Resuelve las siguientes ecuaciones:

a)
$$\frac{(x-1)(x+1)}{2} - \frac{x-5}{6} = \frac{2}{3}(x+1)$$
 (1 punto)

b)
$$\frac{x}{x-3} + \frac{2x}{x+3} = \frac{6}{x^2-9}$$
 (1,5 puntos)

c)
$$\sqrt{2x-1} = \sqrt{2x+1} - 1$$
 (1,5 puntos)

2. Resuelve el siguiente sistema (no lineal) de dos ecuaciones con dos incógnitas (1,5 puntos):

$$\frac{xy}{4} - x + y = 1$$

$$x - \frac{y+7}{3} = -1$$

- 3. Un comerciante compra melones a 40 céntimos el kilo y los vende a 60 céntimos el kilo. Halla cuántos kilos de melones compró si se le estropearon 10 kilos y obtuvo por la venta del resto un beneficio de 42 euros. (1,5 puntos)
- 4. Resuelve la siguiente ecuación polinómica (1 punto):

$$3x^4 + x^3 - 21x^2 - 25x - 6 = 0$$

5. Hallar el valor de k para que la división del polinomio $2x^4 - x^3 - 14x^2 + kx - 6$ entre x - 1 sea exacta. Para dicho valor de k factorizar el polinomio y decir cuáles son todas sus raíces. (2 puntos)

Soluciones:

1. a)
$$\frac{(x-1)(x+1)}{2} - \frac{x-5}{6} = \frac{2}{3}(x+1) \Rightarrow$$
 (multiplicando todos los términos por 6) \Rightarrow

$$\Rightarrow 3(x-1)(x+1)-(x-5)=4(x+1) \Rightarrow 3x^2-3-x+5=4x+4 \Rightarrow 3x^2-5x-2=0.$$

El discriminante de esta ecuación es: $\Delta = (-5)^2 - 4 \cdot 3 \cdot (-2) = 25 + 24 = 49$.

Entonces:
$$x = \frac{5 \pm 7}{6} = \begin{cases} x_1 = \frac{12}{6} = 2\\ x_2 = \frac{-2}{6} = \frac{-1}{3} \end{cases}$$

b)
$$\frac{x}{x-3} + \frac{2x}{x+3} = \frac{6}{x^2 - 9} \Rightarrow \frac{x(x+3)}{(x+3)(x-3)} + \frac{2x(x-3)}{(x+3)(x-3)} = \frac{6}{(x+3)(x-3)} \Rightarrow$$

$$\Rightarrow x^2 + 3x + 2x^2 - 6x = 6 \Rightarrow 3x^2 - 3x - 6 = 0 \Rightarrow$$
 (dividiendo entre 3) \Rightarrow

$$\Rightarrow x^{2} - x - 2 = 0 \Rightarrow x = \frac{1 \pm \sqrt{(-1)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2} = \begin{cases} x_{1} = \frac{4}{2} = 2 \\ x_{2} = \frac{-2}{2} = -1 \end{cases}$$

c)
$$\sqrt{2x-1} = \sqrt{2x+1} - 1 \Rightarrow (\sqrt{2x-1})^2 = (\sqrt{2x+1} - 1)^2 \Rightarrow$$

$$\Rightarrow 2x - 1 = 2x + 1 - 2\sqrt{2x+1} + 1 \Rightarrow 2\sqrt{2x+1} = 3 \Rightarrow (2\sqrt{2x+1})^2 = 3^2 \Rightarrow$$

$$\Rightarrow 4(2x+1) = 9 \Rightarrow 8x + 4 = 9 \Rightarrow 8x = 5 \Rightarrow x = \frac{5}{8}$$

2.
$$xy - x + y = 1$$
 En primer lugar eliminemos denominadores, multiplicando todos los términos de la primera
$$x - \frac{y+7}{3} = -1$$

ecuación por 4 y todos los términos de la segunda por 3:

xy-4x+4y=4 3x-y-7=-3 Despejando y de la segunda ecuación: $-y=-3x+4 \Rightarrow y=3x-4$. Sustituyendo en la primera ecuación: $x(3x-4)-4x+4(3x-4)=4 \Rightarrow$

 \Rightarrow $3x^2-4x-4x+12x-16=4 \Rightarrow$ $3x^2+4x-20=0$. El discriminante de esta última ecuación es $\Delta=4^2-4\cdot3\cdot(-20)=16+240=256$. Entonces:

$$x = \frac{-4\pm 16}{6} = \begin{cases} x_1 = \frac{12}{6} = 2\\ x_2 = \frac{-20}{6} = \frac{-10}{3} \end{cases}$$
, y sustituyendo ahora en $y = 3x - 4$ se tiene:

• Si
$$x_1 = 2 \Rightarrow y_1 = 3 \cdot 2 - 4 \Rightarrow y_1 = 2$$

• Si
$$x_2 = \frac{-10}{3} \Rightarrow y_2 = 3 \cdot \frac{-10}{3} - 4 = \frac{-30}{3} - 4 = -10 - 4 \Rightarrow y_2 = -14$$

3. Llamemos x a los kilos de melones que compró el comerciante. Como se le estropearon 10 tuvo que vender los x-10 que le quedaron. Además, el beneficio por kilo es de 20 céntimos y obtuvo 42 euros por los melones que vendió. Por tanto el planteamiento es: 20(x-10)=4200 (42 euros son 4200 céntimos). Resolviendo la

ecuación:
$$20x - 200 = 4200 \Rightarrow 20x = 4200 \Rightarrow x = \frac{4400}{20} \Rightarrow x = 220$$

Por tanto el comerciante compró 220 kilos de melones.

4. Las posibles raíces del polinomio $3x^4 + x^3 - 21x^2 - 25x - 6$ están entre los divisores del término independiente: $Div(-6) = \{\pm 1, \pm 2, \pm -3, \pm 6\}$. Apliquemos la regla de Ruffini:

	3	1	-21	-25	-6
		-3	2	19	6
	3	-2	-19	-6	0
_2		-6	16	6	
	3	-8	-3	0	
3		9	3		
	3	1	0	_	

Entonces la ecuación $3x^4 + x^3 - 21x^2 - 25x - 6 = 0$ es equivalente a la ecuación

$$(x+1)(x+2)(x-3)(3x+1)=0$$
, de donde

 $x+1=0 \Rightarrow x=-1$, $x+2=0 \Rightarrow x=-2$, $x-3=0 \Rightarrow x=3$ (obsérvese que estas tres soluciones coinciden con las tres raíces del enteras del polinomio), y $3x+1=0 \Rightarrow x=-\frac{1}{3}$

5. Utilizando el teorema del resto:

$$P(1) = 0 \Rightarrow 2 - 1 - 14 + k - 6 = 0 \Rightarrow k - 19 = 0 \Rightarrow k = 19$$

Para este valor de k el polinomio es $2x^4 - x^3 - 14x^2 + 19x - 6$. Utilizando la regla de Ruffini:

	2	-1	-14	19	-6
1		2	1	-13	6
7	2	1	-13	6	0
2		4	10	-6	
	2	5	-3	0	
-3		-6	3		
	2	-1	0	•	

Por tanto la factorización del polinomio es (x-1)(x-2)(x+3)(2x-1)=0 y las raíces del mismo son 1, 2, -3 y $\frac{1}{2}$ (observa que la última raíz es la solución de la ecuación 2x-1=0).