EJERCICIOS DE PORCENTAJES E INTERESES

Ejercicio nº 1.-

Por un artículo que estaba rebajado un 12% hemos pagado 26,4 euros. ¿Cuánto costaba antes de la rebaja?

Ejercicio nº 2.-

El precio de un litro de gasóleo era de 0,51 euros y, al cabo de un año, se transformó en 0,65 euros. ¿Cuál ha sido el porcentaje de subida?

Ejercicio nº 3.-

Un ordenador cuesta 1 036 euros sin I.V.A. Sabiendo que se aplica un 16% de I.V.A., ¿cuál será su precio con I.V.A.?

Ejercicio nº 4.-

El precio de un litro de leche (con I.V.A.) es de 0,6 euros. Sabiendo que el IVA en alimentación es del 7%, ¿cuál será su precio sin I.V.A.?

Ejercicio nº 5.-

En un pueblo que tenía 200 habitantes, ahora viven solamente 80 personas. ¿Qué porcentaje representa la disminución de la población?

Ejercicio nº 6.-

El precio sin I.V.A. de un determinado medicamento es de 15 euros.

- a) Sabiendo que el I.V.A. es del 4%, ¿cuanto costará con I.V.A.?
- b) Con receta médica solo pagamos el 40% del precio total. ¿Cuánto nos costaría este medicamento si lo compráramos con receta?

Ejercicio nº 7.-

Un artículo que costaba inicialmente 60 euros fue rebajado en diciembre un 12%. En el mes de enero tuvo una segunda rebaja de un 15%; y, en febrero, se rebajó otro 10%.

- a) Calcula el precio final después de las tres rebajas.
- b) ¿Cuál es el porcentaje total de rebaja?

Ejercicio nº 8.-

Un contrato de alquiler ha subido un 2% anual durante los tres últimos años. Calcula el precio mensual que tendremos que pagar actualmente, sabiendo que hace 3 años pagábamos 420 euros al mes.

Ejercicio nº 9.-

El precio de un artículo ha aumentado en un 2%; pero, después, ha tenido una rebaja de un 5%. Calcula el índice de variación total y la disminución porcentual del precio.

Ejercicio nº 10.-

Calcula en cuánto se transforma un capital de 2 500 euros depositado durante 4 meses al 7% anual (los periodos de capitalización son mensuales).

Ejercicio nº 11.-

Halla en cuánto se transforman 3 000 euros depositados durante un año al 8% anual si los periodos de capitalización son trimestrales.

Ejercicio nº 12.-

Un capital de 4 000 euros colocado al 8% anual se ha convertido en 5 441,96 euros. ¿Cuántos años han transcurrido? (Los periodos de capitalización son anuales).

Ejercicio nº 13.-

Un capital de 2 000 euros se ha transformado en 2 247,2 euros al cabo de 2 años. Calcula el tanto por ciento anual al que se ha colocado.

Ejercicio nº 14.-

Calcula en cuánto se transforman 800 euros al 10% anual, en un año, si los periodos de capitalización son mensuales.

Ejercicio nº 15.-

Durante 4 años, depositamos al principio de cada año 1 000 euros al 5% con pago anual de intereses. ¿Cuánto dinero tendremos acumulado al final del cuarto año?

Ejercicio nº 16.-

Calcula la cantidad total que tendremos si pagamos al final de cada año una anualidad

de 1 500 euros durante 10 años, al 8% anual.

Ejercicio nº 17.-

Una persona ingresa, al principio de cada año, la cantidad de dinero que viene reflejada en la siguiente tabla:

	CANTIDAD DEPOSITADA (en euros)	
1 ^{er} AÑO	1000	
2º AÑO	1500	
3 ^{er} AÑO	2000	

Calcula cuál será el capital acumulado al cabo de los tres años, sabiendo que el rédito es del 6% anual.

Ejercicio nº 18.-

Hemos decidido ahorrar ingresando en un banco 1 000 euros al principio de cada año. Calcula la cantidad que tendremos ahorrado al cabo de 8 años, sabiendo que el banco nos da un 6% de interés.

Ejercicio nº 19.-

Una persona ingresa en un banco, al principio de cada año, 400 euros, durante 6 años. Calcula el dinero que habrá acumulado al final del sexto año sabiendo que el banco le da un 5% de interés anual.

Ejercicio nº 20.-

Halla la anualidad con la que se amortiza un préstamo de 40 000 euros en 5 años al 12% anual.

Ejercicio nº 21.-

Un coche cuesta 12 000 euros. Nos conceden un préstamo para pagarlo en 48 mensualidades con un interés del 6% anual. ¿Cuál será la cuota mensual que tendremos que pagar?

Ejercicio nº 22.-

Nos han concedido un préstamo hipotecario (para comprar un piso) por valor de 80 000 euros. Lo vamos a amortizar en 180 mensualidades con un interés del 5% anual. ¿Cuál es el valor de cada mensualidad que tendremos que pagar?

Ejercicio nº 23.-

Tenemos que amortizar 30 000 euros en 3 años, con un 8% de interés anual, de modo que cada año pagaremos la tercera parte del capital total más los intereses del capital pendiente. Calcula lo que hay que pagar cada año.

Ejercicio nº 24.-

Calcula el valor de la anualidad con la que se amortiza un préstamo de 25 000 euros en 6 años al 10% de interés anual.

SOLUCIONES PORCENTAJES E INTERESES

Ejercicio nº 1.-

Por un artículo que estaba rebajado un 12% hemos pagado 26,4 euros. ¿Cuánto costaba antes de la rebaja?

Solución:

El índice de variación es 0,88. Por tanto:

$$26,4:0,88=30$$

Antes de la rebaja costaba 30 euros.

Ejercicio nº 2.-

El precio de un litro de gasóleo era de 0,51 euros y, al cabo de un año, se transformó en 0,65 euros. ¿Cuál ha sido el porcentaje de subida?

Solución:

Dividimos la cantidad final entre la inicial para obtener el índice de variación:

$$0.65:0.51=1.27$$

Este índice de variación corresponde a un 27% de aumento.

Ejercicio nº 3.-

Un ordenador cuesta 1 036 euros sin I.V.A. Sabiendo que se aplica un 16% de I.V.A., ¿cuál será su precio con I.V.A.?

Solución:

El índice de variación que corresponde a un aumento del 16% es 1,16. Por tanto:

$$1036 \cdot 1,16 = 1\ 201,76$$

El precio con I.V.A. es de 1 201,76 euros

Ejercicio nº 4.-

El precio de un litro de leche (con I.V.A.) es de 0,6 euros. Sabiendo que el IVA en alimentación es del 7%, ¿cuál será su precio sin I.V.A.?

Solución:

El índice de variación para un aumento del 7% es de 1,07. Como conocemos la cantidad final, la cantidad inicial la hallamos dividiendo entre este índice:

$$0.6:1.07=0.56$$

El precio sin I.V.A. es de 0,56 euros.

Ejercicio nº 5.-

En un pueblo que tenía 200 habitantes, ahora viven solamente 80 personas. ¿Qué porcentaje representa la disminución de la población?

Solución:

Dividimos la cantidad final entre la inicial para hallar el índice de variación:

$$80:200=0.4$$

Este índice de variación corresponde a una disminución del 60%.

Ejercicio nº 6.-

El precio sin I.V.A. de un determinado medicamento es de 15 euros.

- a) Sabiendo que el I.V.A. es del 4%, ¿cuanto costará con I.V.A.?
- b) Con receta médica solo pagamos el 40% del precio total. ¿Cuánto nos costaría este medicamento si lo compráramos con receta?

Solución:

a) El índice de variación para un aumento del 4% es de 1,04. Por tanto, el medicamento con I.V.A. costará:

$$15 \cdot 1,04 = 15,6$$
 euros

b) Para calcular el 40% multiplicamos por 0,4:

$$15.6 \cdot 0.4 = 6.24$$

El precio con receta sería de 6,24 euros.

Ejercicio nº 7.-

Un artículo que costaba inicialmente 60 euros fue rebajado en diciembre un 12%. En el mes de enero tuvo una segunda rebaja de un 15%; y, en febrero, se rebajó otro 10%.

- a) Calcula el precio final después de las tres rebajas.
- b) ¿Cuál es el porcentaje total de rebaja?

Solución:

a) Calculamos el índice de variación total:

$$0.88 \cdot 0.85 \cdot 0.90 = 0.6732$$

Por tanto, el precio final fue:

$$60 \cdot 0.6732 = 40.39$$
 euros

b) El índice de variación obtenido, 0,6732, corresponde a una disminución del 32,68%.

Ejercicio nº 8.-

Un contrato de alquiler ha subido un 2% anual durante los tres últimos años. Calcula el precio mensual que tendremos que pagar actualmente, sabiendo que hace 3 años pagábamos 420 euros al mes.

Solución:

El índice de variación correspondiente a un aumento del 2% es de 1,02. Al cabo de los tres años será:

$$1,02 \cdot 1,02 \cdot 1,02 = (1,02)^3 = 1,061208$$

Si multiplicamos por 420, obtenemos el valor de la mensualidad actual:

$$402 \cdot 1,061208 \approx 445,71$$
 euros

Ejercicio nº 9.-

El precio de un artículo ha aumentado en un 2%; pero, después, ha tenido una rebaja de un 5%. Calcula el índice de variación total y la disminución porcentual del precio.

Solución:

El índice de variación total será:

$$1.02 \cdot 0.95 = 0.969$$

Este índice corresponde a una disminución porcentual de:

$$100\% - 96.9\% = 3.1\%$$

Ejercicio nº 10.-

Calcula en cuánto se transforma un capital de 2 500 euros depositado durante 4 meses al 7% anual (los periodos de capitalización son mensuales).

Solución:

7% anual correspone a $\left(\frac{7}{12}\right)$ % mensual.

Al cabo de los 4 meses se habrá transformado en:

$$2500 \cdot \left(1 + \frac{7}{1200}\right)^4 = 2558,85 \text{ euros}$$

Ejercicio nº 11.-

Halla en cuánto se transforman 3 000 euros depositados durante un año al 8% anual si los periodos de capitalización son trimestrales.

Solución:

Como en un año hay 4 trimestres:

8% anual
$$\rightarrow \frac{8}{4} = 2\%$$
 trimestral

Al cabo de un trimestre tendríamos:

Al cabo de cuatro trimestres (un año) serían:

$$3\ 000 \cdot 1,02^4 = 3\ 247,30 \text{ euros}$$

Ejercicio nº 12.-

Un capital de 4 000 euros colocado al 8% anual se ha convertido en 5 441,96 euros. ¿Cuántos años han transcurrido? (Los periodos de capitalización son anuales).

Solución:

Al cabo de *n* años tendremos: $4\,000 \cdot (1,08)^n = 5\,441,96$ euros

Por tanto:

$$(1,08)^n = \frac{5441,96}{4000}$$

$$(1,08)^n = 1,36049 \rightarrow n = 4 \text{ años}$$

Habrán transcurrido 4 años.

Ejercicio nº 13.-

Un capital de 2 000 euros se ha transformado en 2 247,2 euros al cabo de 2 años. Calcula el tanto por ciento anual al que se ha colocado.

Solución:

Si se ha colocado al r % anual durante dos años, se ha transformado en:

$$2000 \cdot \left(1 + \frac{r}{100}\right)^2 = 2247.2 \text{ euros}$$

Es decir:

$$\left(1 + \frac{r}{100}\right)^2 = \frac{2247,2}{2000}$$

$$\left(1 + \frac{r}{100}\right)^2 = 1,1236$$

$$1 + \frac{r}{100} = \sqrt{1,1236}$$

$$1 + \frac{r}{100} = 1,06 \rightarrow \frac{r}{100} = 0,06 \rightarrow r = 6\%$$

Por tanto, se ha colocado al 6% anual.

Ejercicio nº 14.-

Calcula en cuánto se transforman 800 euros al 10% anual, en un año, si los periodos de capitalización son mensuales.

Solución:

Un 10% anual correspone a un $\left(\frac{10}{12}\right)$ % mensual.

Al cabo de 12 meses (un año) se habrá transformado en:

$$800 \cdot \left(1 + \frac{10}{1200}\right)^{12} = 883,77 \text{ euros}$$

Ejercicio nº 15.-

Durante 4 años, depositamos al principio de cada año 1 000 euros al 5% con pago anual de intereses. ¿Cuánto dinero tendremos acumulado al final del cuarto año?

Solución:

• Los 1 000 euros del primer año se transforman, al cabo de 4 años en:

$$1\,000\cdot (1,05)^4$$
 euros

• Los 1 000 euros del segundo año se transforman, al cabo de 3 años en:

$$1\,000\cdot (1,05)^3$$
 euros

• Los 1 000 euros del tercer año se transforman, al cabo de 2 años en:

$$1\,000 \cdot (1,05)^2$$
 euros

• Los 1 000 euros del cuarto año se transforman, al cabo de 1 año en:

$$1\,000 \cdot (1,05)$$
 euros

• Por tanto al final del cuarto año tendremos en total:

$$1\ 000 \cdot (1,05) + 1\ 000 \cdot (1,05)^2 + 1\ 000 \cdot (1,05)^3 + 1\ 000 \cdot (1,05)^4$$

Esta es la suma de los cuatro primeros términos de una progresión geométrica en la que:

El primer término es $a_1 = 1000 \cdot (1,05)$

El cuarto término es $a_4 = 1000 \cdot (1,05)^4$

La razón es r = 1.05

La suma será:

$$S = \frac{1000 \cdot (1,05)^4 \cdot (1,05) - 1000 \cdot (1,05)}{1,05 - 1} =$$

$$= \frac{1000 \cdot (1,05)^5 - 1000 \cdot (1,05)}{0,05} = \frac{1000 \cdot (1,05) \left[(1,05)^4 - 1 \right]}{0,05}$$

$$= 4525,63 \text{ euros.}$$

Al final del cuarto año tendremos 4 525,63 euros.

Ejercicio nº 16.-

Calcula la cantidad total que tendremos si pagamos al final de cada año una anualidad de 1 500 euros durante 10 años, al 8% anual.

Solución:

• Como pagamos al final de cada año, los primeros 1 500 euros estarán un total de 9 años y se habrán transformado en:

$$1500 \cdot (1,08)^9$$
 euros

• Los 1 500 euros del 2º año se transformarán, en 8 años, en:

$$1500 \cdot (1,08)^8$$
 euros

- Los 1 500 euros del 10° año son 1 500 euros más.
- En total, al final de los 10 años tendremos:

$$1500 + ... + 1500 (1,08)^8 + 1500 \cdot (1,08)^9$$

Esta es la suma de los diez primeros términos de una progresión geométrica en la que:

El primer término es $a_1 = 1500$.

El décimo término es $a_{10} = 1500 \cdot (1,08)^9$.

La razón es r = 1,08. La suma será:

$$S = \frac{1500 \cdot (1,08)^9 \cdot (1,08) - 1500}{1,08 - 1} = \frac{1500 \cdot (1,08)^{10} - 1500}{0,08} = \frac{1500 \cdot (1,08)^{10} - 1}{0,08} = \frac{1500 \cdot (1,08)^{10} - 1}{0,08} = 21729,84 \text{ euros}$$

Al final de los años 10 años tendremos un total de 21 729,84 euros.

Ejercicio nº 17.-

Una persona ingresa, al principio de cada año, la cantidad de dinero que viene reflejada en la siguiente tabla:

	CANTIDAD DEPOSITADA (en euros)	
1 ^{er} AÑO	1000	
2º AÑO	1500	
3 ^{er} AÑO	2000	

Calcula cuál será el capital acumulado al cabo de los tres años, sabiendo que el rédito es del 6% anual.

Solución:

• Los 1 000 euros del primer año se transforman, al cabo de tres años, en:

$$1\,000\cdot (1,06)^3$$
 euros

• Los 1 500 euros del segundo año se transforman, al cabo de dos años, en:

$$1500 \cdot (1,06)^2$$
 euros

• Los 2 000 euros del tercer años se transforman, al cabo de un año, en:

$$2000 \cdot (1,06)$$

• Por tanto, el total acumulado al cabo de los tres años será:

$$1\,000 \cdot (1,06)^3 + 1500 \cdot (1,06)^2 + 2000 \cdot (1,06) = 4\,996,42 \text{ euros}$$

Ejercicio nº 18.-

Hemos decidido ahorrar ingresando en un banco 1 000 euros al principio de cada año. Calcula la cantidad que tendremos ahorrado al cabo de 8 años, sabiendo que el banco nos da un 6% de interés.

Solución:

• Los 1 000 euros del primer año se transforman, al cabo de 8 años, en:

$$1\,000 \cdot (1.06)^8$$
 euros.

• Los 1 000 euros del segundo años se transforman, al cabo de 7 años, en:

$$1\,000\cdot(1,06)^7$$
 euros.

• Los 1 000 euros del último año se transforman, al cabo de un año, en:

$$1\ 000 \cdot (1,06)$$
 euros.

• Por tanto, al final de los ocho años tendremos, en total:

$$1\ 000 \cdot (1,06) + ... + 1\ 000 \cdot (1,06)^7 + 1\ 000 \cdot (1,06)^8$$

Esta es la suma de los ocho primeros términos de una progresión geométrica en la que:

El primer término es
$$a_1 = 1 000 \cdot (1,06)$$

El octavo término es
$$a_8 = 1 000 \cdot (1,06)^8$$

La razón es r = 1,06. Su suma será:

$$S = \frac{1000 \cdot (1,06)^8 \cdot (1,06) - 1000(1,06)}{1,06 - 1} = \frac{1000 \cdot (1,06) \left[(1,06)^8 - 1 \right]}{0.06} = 10491,32 \text{ euros.}$$

Al final de los ocho años tendremos 10 491,32 euros.

Ejercicio nº 19.-

Una persona ingresa en un banco, al principio de cada año, 400 euros, durante 6 años. Calcula el dinero que habrá acumulado al final del sexto año sabiendo que el banco le da un 5% de interés anual.

Solución:

• Los 400 euros del 1^{er} año se transforman, al cabo de 6 años, en:

$$400 \cdot (1,05)^6$$
 euros.

• Los 400 euros del 2º año se transforman, al cabo de 5 años en:

$$400 \cdot (1,05)^5$$
 euros.

• Los 400 euros del 6º año se transforman, al cabo del 1 año en:

$$400 \cdot (1,05)$$
 euros.

• Por tanto, el total acumulado al cabo de los 6 años será:

$$400 \cdot (1,05) + ... + 400 \cdot (1,05)^5 + 400 \cdot (1,05)^6$$

Esta es la suma de los seis primeros términos de una progresión geométrica en la que:

El primer término es $a_1 = 400 \cdot (1,05)$

El sexto término es $a_6 = 400 \cdot (1,05)^6$

La razón es r = 1,05.

Su suma será:

$$S = \frac{400 \cdot \left(1,05\right)^{6} \cdot \left(1,05\right) - 400 \cdot \left(1,05\right)}{1,05 - 1} = \frac{400 \cdot \left(1,05\right) \left[\left(1,05\right)^{6} - 1\right]}{0,05} = 2\,856,80 \text{ euros}$$

Al final del sexto año tendremos 2 856,80 euros.

Ejercicio nº 20.-

Halla la anualidad con la que se amortiza un préstamo de 40 000 euros en 5 años al 12% anual.

Solución:

- El capital es C = 40000 euros.
- El tiempo son n = 5 años.
- Elinteréses del r = 12% anual $\rightarrow i = \frac{r}{100} = \frac{12}{100} = 0,12$

• La anualidad será:

$$a = C \frac{(1+i)^n \cdot i}{(1+i)^n - 1} = 40\,000 \cdot \frac{(1,12)^5 \cdot 0,12}{(1,12)^5 - 1} = 11\,096,39 \text{ euros}$$

• Cada año se deben pagar 11 096,39 euros.

Ejercicio nº 21.-

Un coche cuesta 12 000 euros. Nos conceden un préstamo para pagarlo en 48 mensualidades con un interés del 6% anual. ¿Cuál será la cuota mensual que tendremos que pagar?

Solución:

- El capital es C = 12000 euros.
- El tiempo son n = 48 meses.
- Elinteréses del r = 6% anual $\rightarrow i = \frac{r}{1200} = \frac{6}{1200} = 0,005$
- La mensualidad será:

$$m = C \frac{(1+i)^n \cdot i}{(1+i)^n - 1} = 12\,000 \frac{(1,005)^{48} \cdot 0,005}{(1,005)^{48} - 1} = 281,82 \text{ euros}$$

• Cada mes tendremos que pagar 281,82 euros.

Ejercicio nº 22.-

Nos han concedido un préstamo hipotecario (para comprar un piso) por valor de 80 000 euros. Lo vamos a amortizar en 180 mensualidades con un interés del 5% anual. ¿Cuál es el valor de cada mensualidad que tendremos que pagar?

Solución:

- El capital es C = 80 000 euros.
- El tiempo son n = 180 meses.
- Elinterésdel r = 5% anual $\rightarrow i = \frac{5}{1200}$
- La mensualidad será:

$$m = C \frac{(1+i)^n \cdot i}{(1+i)^n - 1} = 80000 \frac{\left(1 + \frac{5}{1200}\right)^{180} \cdot \frac{5}{1200}}{\left(1 + \frac{5}{1200}\right)^{180} - 1} = 63263 \text{ euros}$$

• Cada mes tendremos que pagar 632,63 euros.

Ejercicio nº 23.-

Tenemos que amortizar 30 000 euros en 3 años, con un 8% de interés anual, de modo que cada año pagaremos la tercera parte del capital total más los intereses del capital pendiente. Calcula lo que hay que pagar cada año.

Solución:

• Hagamos una tabla:

		CAPITAL PENDIENTE	PAGO DE + PAGO DE = PAGO ANUAL CAPITAL	DEUDA PENDIENTE
	1 ^{er} AÑO	30 000	30000 · 0,08 + 10000 = 12400	20000
ľ	2º AÑO	20 000	20000 · 0,08 + 10000 = 11600	10000
	3 ^{er} AÑO	10 000	10000 · 0,08 + 10000 = 10800	0

• El primer año habrá que pagar 12 400 euros, el segundo año 11 600 euros y, el tercer año, 10 800 euros.

Ejercicio nº 24.-

Calcula el valor de la anualidad con la que se amortiza un préstamo de 25 000 euros en 6 años al 10% de interés anual.

Solución:

- El capital es C = 25000 euros.
- El tiempo son n = 6 años.
- Elinteréses del r = 10% anual $\rightarrow i = \frac{r}{100} = \frac{10}{100} = 0,1$
- La anualidad será:

$$a = C \cdot \frac{(1+i)^n \cdot i}{(1+i)^n - 1} = 25\,000 \cdot \frac{(1,1)^6 \cdot 0,1}{(1,1)^6 - 1} = 5\,740,18$$
 euros

• Cada año se deben pagar 5740,18 euros.