

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2023

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

- Junio, Ejercicio A1
- Reserva 1, Ejercicio A2
- Reserva 2, Ejercicio A2
- Reserva 3, Ejercicio A1
- Reserva 4, Ejercicio A1
- Julio, Ejercicio A2

Sea la función F(x, y) = 5x - 3y y la región del plano R definida mediante las inecuaciones:

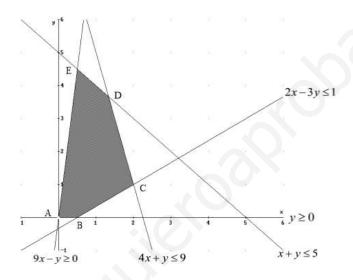
$$2x-3y \le 1$$
 $4x+y \le 9$ $x+y \le 5$ $9x-y \ge 0$ $y \ge 0$

- a) Dibuje la región R y calcule sus vértices.
- b) Indique razonadamente si los puntos A(2,2) y B(1,3'5) pertenecen a la región R.
- c) Obtenga los puntos de la región R donde F alcanza el máximo y el mínimo y calcule sus valores correspondientes.

SOCIALES II. 2023 JUNIO. EJERCICIO A1

RESOLUCIÓN

a) Lo primero que hacemos es dibujar el recinto y calcular los vértices del mismo



Los vértices del recinto son los puntos: A = (0,0); $B = (\frac{1}{2},0)$; C = (2,1); $D = (\frac{4}{3},\frac{11}{3})$; $E = (\frac{1}{2},\frac{9}{2})$

b) El punto A(2,2) pertenece a la región R si verifica las inecuaciones.

$$2x-3y \le 1 \Rightarrow 4-6 \le 1 \Rightarrow Cierto$$

$$4x + y \le 9 \Rightarrow 8 + 2 \le 9 \Rightarrow Falso$$

Por lo tanto, el punto A(2,2) no pertenece a la región R.

El punto B(1,3'5) pertenece a la región R si verifica las inecuaciones.

$$2x-3y \le 1 \Rightarrow 2-10'5 \le 1 \Rightarrow Cierto$$

$$4x + y \le 9 \Rightarrow 4 + 3'5 \le 9 \Rightarrow Cierto$$

$$x + y \le 5 \Rightarrow 1 + 3'5 \le 5 \Rightarrow Cierto$$

$$9x - y \ge 0 \Rightarrow 9 - 3'5 \ge 0 \Rightarrow Cierto$$

$$y \ge 0 \Rightarrow 3'5 \ge 0 \Rightarrow Cierto$$

Por lo tanto, el punto B(1,3'5) si pertenece a la región R.

c) Calculamos los valores que toma la función F(x, y) = 5x - 3y en dichos puntos

$$F(A) = F(0,0) = 0$$
; $F(B) = F(\frac{1}{2},0) = \frac{5}{2}$; $F(C) = F(2,1) = 7$

$$F(D) = F\left(\frac{4}{3}, \frac{11}{3}\right) = -\frac{13}{3}$$
; $F(E) = F\left(\frac{1}{2}, \frac{9}{2}\right) = -11$

Luego vemos que el máximo está en el punto C = (2,1) y vale 7. El mínimo está en el punto $E = \left(\frac{1}{2}, \frac{9}{2}\right)$ y vale -11.

Una empresa de material informático dispone de dos cadenas de fabricación, A y B, en las que quiere aumentar su producción realizando horas extraordinarias.

En una hora extraordinaria de trabajo, la cadena A prepara 15 portátiles y 6 tablets, y la cadena B prepara 10 portátiles y 10 tablets. Los costes de producción por hora extraordinaria de A y B son de 300 \in y 600 \in respectivamente por hora extraordinaria. La cadena B puede realizar, como máximo, el triple de horas extraordinarias que la cadena A. Si para la próxima semana se debe producir adicionalmente un máximo de 360 portátiles y al menos 216 tablets, formule y resuelva el problema que permita obtener la planificación de la empresa que minimice los costes de producción. ¿A cuánto ascienden dichos costes?.

SOCIALES II. 2023 RESERVA 1. EJERCICIO A2

RESOLUCIÓN

Ponemos en una tabla los datos del problema.

	Portátiles	Tablets	Gastos
x = Cadena A	15	6	300 €
y =Cadena B	10	10	600 €
Total	≤360	≥216	

$$y \le 3x$$

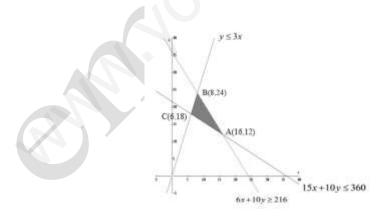
$$15x + 10y \le 360$$

Las inecuaciones del problema son: $6x+10y \ge 216$ y la función a es: F(x, y) = 300x+600y.

$$y \ge 0$$

$$x \ge 0$$

A continuación dibujamos el recinto y calculamos sus vértices.



Los vértices del recinto son los puntos: A = (16,12); B = (8,24); C = (6,18)

Calculamos los valores que toma la función F(x, y) = 300x + 600y en dichos puntos

$$F(A) = F(16,12) = 12.000 \in F(B) = F(8,24) = 16.800 \in F(C) = F(6,18) = 12.600 \in F(B) = 12.600$$

Luego, el mínimo está en el punto A = (16,12). 16 horas de la cadena A y 12 horas de la cadena B. Los costes son 12.000 \in

Una compañía de transporte marítimo de mercancías dispone de dos barcos B_1 y B_2 para realizar una determinada ruta, durante un año, entre dos ciudades costeras europeas. El barco B_1 no puede realizar más de 14 viajes y debe realizar tantos viajes o más que el barco B_2 . Entre los dos barcos deben realizar al menos 10 viajes y como mucho 25. La compañía obtiene unos beneficios de 15000 ϵ por cada viaje del barco B_1 y 17000 ϵ por cada viaje del barco B_2 .

Halle el número de viajes que debe realizar cada barco para que el beneficio obtenido por la empresa sea máximo y obtenga dicho beneficio.

SOCIALES II. 2023 RESERVA 2. EJERCICIO A2

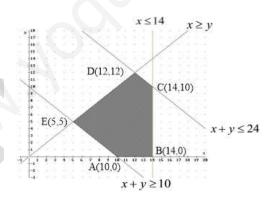
RESOLUCIÓN

$$x = viajes \ del \ barco \ B_1$$

 $y = viajes \ del \ barco \ B_2$

Las inecuaciones del problema son:
$$x + y \ge 10$$
 $x + y \le 24$ $y \ge 0$ $x + y \le 24$ $y \ge 0$ $x + y \le 24$ $y \ge 0$

A continuación dibujamos el recinto y calculamos sus vértices.



Los vértices del recinto son los puntos:

$$A = (10,0)$$
; $B = (14,0)$; $C = (14,10)$; $D = (12,12)$; $E = (5,5)$

Calculamos los valores que toma la función F(x, y) = 15000x + 17000y en dichos puntos

$$F(A) = F(10,0) = 150.000 \in F(B) = F(14,0) = 210.000 \in F(C) = F(14,10) = 380.000 \in F(A) = F($$

$$F(D) = F(12,12) = 384.000 \in F(E) = F(5,5) = 160.000 \in F(E) = F(5,5) = 160.000 \in F(E) = F(E)$$

Luego, el máximo se alcanza cuando hacen 12 viajes cada barco y el beneficio son 384.000 €

El aforo de un campo de fútbol es de 10000 personas. Según el reglamento establecido por la federación de fútbol, como máximo deben ponerse a la venta 3000 entradas para los aficionados del equipo visitante y por cada aficionado visitante debe haber dos aficionados locales como mínimo y cuatro aficionados locales como máximo.

Si el precio de la entrada es de 50 € pero el aficionado local tiene un descuento del 20%, ¿cuántos aficionados locales y visitantes deben asistir para obtener el mayor importe con la venta de entradas?.

SOCIALES II. 2023 RESERVA 3. EJERCICIO A1

RESOLUCIÓN

x = entradas aficionados locales

y =entradas aficionados visitantes

$$x + y \le 10000$$

$$y \le 3000$$

$$x \ge 2y$$

$$x \le 4y$$

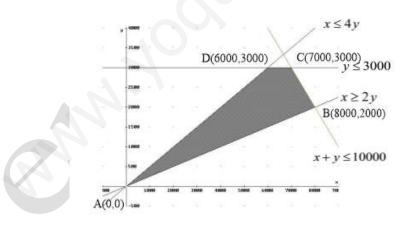
$$x \ge 0$$

$$y \ge 0$$

$$y = 40x + 50y$$

Las inecuaciones del problema son:

A continuación dibujamos el recinto y calculamos sus vértices.



Los vértices del recinto son los puntos:

$$A = (0,0)$$
; $B = (8000,2000)$; $C = (7000,3000)$; $D = (6000,3000)$

Calculamos los valores que toma la función F(x, y) = 40x + 50y en dichos puntos

$$F(A) = F(0,0) = 0 \in$$
; $F(B) = F(8000,2000) = 420.000 \in$; $F(C) = F(7000,3000) = 430.000 \in$
 $F(D) = F(6000,3000) = 390.000 \in$

Luego, el máximo se alcanza cuando se venden 7000 entradas a los aficionados locales y 3000 a los visitantes. La máxima recaudación son 430.000 €

Una empresa de pinturas quiere elaborar botes de pintura de dos colores nuevos: Júpiter y Minerva. Para ello, dispone de 1000 kg de pintura de color verde, 800 kg de color morado y 300 kg de color naranja. Para elaborar un bote de color Júpiter se necesitan 10 kg de pintura verde, 5 kg de morada y 5 kg de naranja. Para elaborar un bote de color Minerva se necesitan 5 kg de pintura verde y 5 kg de morada. Sabiendo que se obtiene un beneficio de 30 € por cada bote de pintura Júpiter y 20 € por un bote de pintura Minerva, ¿cuántos botes de cada tipo deberá fabricar la empresa para obtener un beneficio máximo?¿cuál será el valor de ese beneficio?.

SOCIALES II. 2023 RESERVA 4. EJERCICIO A1

RESOLUCIÓN

Ponemos en una tabla los datos del problema.

	Verdes	Morado	Naranja	
x = Júpiter	10	5	5	
y = Minerva	5	5	0	
Total	1000	800	300	

$$10x + 5y \le 1000$$

$$5x + 5y \le 800$$

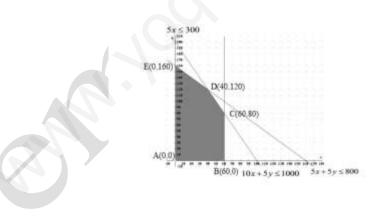
Las inecuaciones del problema son:

$$5x \le 300$$

y la función a es:
$$F(x, y) = 30x + 20y$$
.

$$x \ge 0$$
$$y \ge 0$$

A continuación dibujamos el recinto y calculamos sus vértices.



Los vértices del recinto son los puntos:

$$A = (0,0)$$
; $B = (60,0)$; $C = (60,80)$; $D = (40,120)$; $E = (0,160)$

Calculamos los valores que toma la función F(x, y) = 30x + 20y en dichos puntos

$$F(A) = F(0,0) = 0 \in ; F(B) = F(60,0) = 1800 \in ; F(C) = F(60,80) = 3400 \in$$

$$F(D) = F(40,120) = 3600 \in F(E) = F(0,160) = 3200 \in F(E)$$

Luego, el máximo se alcanza cuando se fabrican 40 botes de pintura Júpiter y 120 botes de pintura Minerva. El beneficio máximo es 3.600 €

Un artesano decide montar dos tipos de anillos utilizando dos tipos de piedras semipreciosas, una de mayor calidad que otra. Para montar uno de los anillos tarda 20 minutos y utiliza 1 de las piedras de mayor calidad y 2 de la menor calidad. Para el otro tarda 50 minutos y utiliza 3 piedras de mayor calidad y 1 de menor calidad.

Semanalmente, el artesano dispone de 200 piedras de mayor calidad y 150 de menor calidad. Además, quiere trabajar al menos 1900 minutos a la semana.

Sabiendo que el primer tipo de anillo se vende a 21€, el segundo a 50€ y que deben fabricarse al menos 20 anillos del primer tipo a la semana, determine cuántos anillos de cada tipo deben montarse para maximizar el valor de la ventas. ¿A cuánto asciende dicho valor?.

SOCIALES II. 2023 JULIO. EJERCICIO A2

RESOLUCIÓN

Ponemos en una tabla los datos del problema.

	Tiempo	Piedra más calidad	Piedra menos calidad	Precio
x =Anillo tipo 1	20 min	1	2	21 €
y =Anillo tipo 2	50 min	3	1	50€
Total	1900 min	200	150	

$$20x + 50y \ge 1900$$

$$x + 3y \le 200$$

Las inecuaciones del problema son:

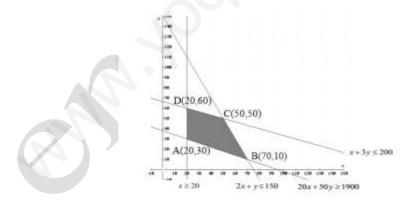
$$2x + y \le 150$$

$$y$$
 la función a es: $F(x, y) = 21x + 50y$.

$$x \ge 20$$

$$y \ge 0$$

A continuación dibujamos el recinto y calculamos sus vértices.



Los vértices del recinto son los puntos: A = (20,30); B = (70,10); C = (50,50); D = (20,60)

Calculamos los valores que toma la función F(x, y) = 21x + 50y en dichos puntos

$$F(A) = F(20,30) = 1920$$
;

$$F(B) = F(70,10) = 1970;$$

$$F(C) = F(50,50) = 3550;$$

$$F(D) = F(20, 60) = 3420$$

Luego, el máximo se alcanza cuando se fabrican 50 anillos del tipo 1 y 50 anillos del tipo 2 y el dinero que se obtiene son 3550 €.

www.emestrada.org