Estudio completo de $y = \frac{1-x}{x^2}$

1° Dominio de f(x):

$$D[f(x)] = \Re -\{0\}$$

La función no existe si

$$x^2 = 0 \Rightarrow x = 0$$

2ª Cortes con los ejes:

Corte con OX: (¿,0)

0=1-x, x=1; (1,0)

Corte con OY: (0,?)

No corta al OY en x=0 no existe.

3° Simetrías:

$$f(-x) = \frac{1 - (-x)}{(-x)^2} = \frac{1 + x}{x^2} \Rightarrow No$$
 hay simetría

4° Asíntotas:

***A.V.** :
$$D[f(x)] = \Re -\{0\}$$

Luego tiene como posible asíntota vertical: ¿x=0?

$$\lim_{x \to 0} \frac{1 - x}{x^2} = \frac{1}{+0} = +\infty$$

Este límite nos sirve para determinar que x=0 es ASÍNTOTA VERTICAL

*AH.:

A) Se calcula el
$$\lim_{x \to \infty} f(x)$$

$$\lim_{x \to +\infty} \frac{1-x}{x^2} = \lim_{\substack{-\infty \\ \infty}} \lim_{x \to +\infty} \frac{-x}{x^2} = \lim_{x \to +\infty} \frac{-1}{x} = -0$$

Luego "y=0" será una ASÍNTOTA HORIZONTAL.

B) Se determina la posición relativa de la gráfica y la asíntota:

	$y = \frac{1 - x}{x^2}$	Y ₁ - 0	Situación relativa de la gráfica y la asíntota
x=100	$y = \frac{-99}{(100)^2} = -0,0099$	-0,0099-0<0	La gráfica esta por debajo de la asíntota en el +∞
x=-100	$y = \frac{101}{(-100)^2} = 0,0101$	0,0101-0>0	La gráfica esta por encima de la asíntota en el -∞

A.O. : No tiene porque tiene asíntota horizontal

5° Monotonía, Máximos y mínimos relativos:

Calculamos y´=0 para estudiar el cambio de monotonía

$$y' = \frac{x^2 \cdot (-1) - (1-x) \cdot 2x}{x^4} = \frac{-x^2 - 2x + 2x^2}{x^4} = \frac{x^2 - 2x}{x^4} = \frac{x - 2}{x^3}$$

$$y'=0 \Rightarrow x-2=0 \Rightarrow x=2$$

 $\forall x \in (-\infty,0) \Rightarrow y'(-4) > 0$ creciente
 $\forall x \in (0,2) \Rightarrow y'(1) < 0$ decreciente
 $\forall x \in (2,+\infty) \Rightarrow y'(4) < 0$ creciente

En $(2, \frac{-1}{4})$ existe un mínimo relativo.

6º Curvatura, puntos de inflexión.

$$y'' = \frac{x^3 \cdot 1 - (x - 2) \cdot 3x^2}{x^6} = \frac{(x^2)(x - 3x + 6)}{x^6} = \frac{-2x + 6}{x^4}$$
$$y'' = 0 \implies -2x + 6 = 0 \implies x = 3$$

$$\forall x \in (-\infty,0) \Rightarrow y''(-8) > 0$$
 cóncava
 $\forall x \in (0,3) \Rightarrow y''(1) > 0$ cóncava
 $\forall x \in (3,+\infty) \Rightarrow y''(8) < 0$ convexa

En (3, -2/9) hay un punto de Inflexión.

7° Gráfica:

