
6 EL LENGUAJE ALGEBRAICO

1 EXPRESIONES ALGEBRAICAS

Página 87

- 1 Expresa en lenguaje algebraico.
 - a) El doble de un número menos su tercera parte.
 - b) El doble del resultado de sumarle tres unidades a un número.
 - c) La edad de Alberto ahora y dentro de siete años.
 - d) El perímetro de este triángulo:

- e) Eva tiene cuatro años menos que Óscar. (Expresa la edad de cada uno).
- a) $2x \frac{x}{3}$
- b) 2(x + 3)
- c) La edad de Alberto ahora $\rightarrow x$ La edad de Alberto dentro de 7 años $\rightarrow x$ + 7
- d) 3x + 4x + 5x = 12x
- e) La edad de Oscar $\rightarrow x$ La edad de Eva $\rightarrow x - 4$

2 MONOMIOS

Página 88

1	Indica el	coeficiente y	z el	orado	de	cada	monom	io:
	minuica ci		, .	LEIAUU	uc	caua		

a) $-2x^{7}$

b) x^{9}

c) x

d) 5

a) $-2x^2 \rightarrow \text{coeficiente} = -2 \text{ y grado } 2$

b) $x^9 \rightarrow \text{coeficiente} = 1 \text{ y grado } 9$

c) $x \rightarrow \text{coeficiente} = 1 \text{ y grado } 1$

d) $5 \rightarrow \text{coeficiente} = 5 \text{ y grado } 0$

2 Di cuáles de los siguientes monomios son semejantes a $5x^2$:

 $7x^2 \quad 5x^3 \quad 5x \quad 5xy \quad x^2 \quad 3x^2y$

Los monomios que son semejantes a $5x^2$ son $7x^2$ y x^2 .

3 Escribe dos monomios semejantes a cada uno de los siguientes:

a) -5xy

b) $2x^4$ c) x

d) $3xy^2$

a) Cualquier monomio que tenga parte literal xy.

Por ejemplo: 3xy, xy, 5xy

b) Cualquier monomio que tenga parte literal x^4 .

Por ejemplo: $3x^4$, x^4 , $5x^4$

c) Cualquier monomio que tenga parte literal x.

Por ejemplo: 3x, -x, 5x

d) Cualquier monomio que tenga parte literal xy^2 .

Por ejemplo: $-3xy^2$, xy^2 , $5xy^2$

4 Halla el valor numérico para x = 3, y = -2:

a) $5x^3$

b) 2x1

c) xv^2

 \mathbf{d}) -xy

a) El valor numérico de
$$5x^3$$
 para $x = 3$ es $5 \cdot 3^3 = 135$.

b) El valor numérico de
$$2xy$$
 para $x = 3$, $y = -2$ es $2 \cdot 3 \cdot (-2) = -12$.

c) El valor numérico de
$$xy^2$$
 para $x = 3$, $y = -2$ es $3 \cdot (-2)^2 = 12$.

d) El valor numérico de
$$-xy$$
 para $x = 3$, $y = -2$ es $(-3) \cdot (-2) = 6$.

Matemáticas orientadas a las Enseñanzas Aplicadas 3

Página 89

5 Efectúa las siguientes sumas de monomios:

a)
$$5x - 3x + 4x + 7x - 11x + x$$

b)
$$3x^2y - 5x^2y + 2x^2y + x^2y$$

c)
$$7x^3 - 11x^3 + 3y^3 - y^3 + 2y^3$$

a)
$$5x - 3x + 4x + 7x - 11x + x = 3x$$

b)
$$3x^2y - 5x^2y + 2x^2y + x^2y = x^2y$$

c)
$$7x^3 - 11x^3 + 3y^3 - y^3 + 2y^3 = -4x^3 + 4y^3$$

6 Opera.

a)
$$(3x^2) \cdot (5x^4)$$

b)
$$(x^2) \cdot (x)$$

c)
$$(5x^3)^2$$

d)
$$(2x)^4$$

a)
$$(3x^2) \cdot (5x^4) = 15x^6$$

b)
$$(x^2) \cdot (x) = x^3$$

c)
$$(5x^3)^2 = 25x^6$$

d)
$$(2x)^4 = 16x^4$$

7 Reduce.

a)
$$(5x-4)-(2x+3)$$

b)
$$(x^2 + 5x) - (4x - 1)$$

c)
$$(2x^3 - x^2 + x - 1) - (x^2 + x - 4)$$

a)
$$(5x-4) - (2x+3) = 5x-4-2x-3 = 3x-7$$

b)
$$(x^2 + 5x) - (4x - 1) = x^2 + 5x - 4x + 1 = x^2 + x + 1$$

c)
$$(2x^3 - x^2 + x - 1) - (x^2 + x - 4) = 2x^3 - x^2 + x - 1 - x^2 - x + 4 = 2x^3 - 2x^2 + 3$$

8 Divide los monomios de cada caso:

a)
$$10x^2 : 5x$$

b)
$$4x^3 : 6x^5c$$
)

$$4xy^2:6xy^2$$

d)
$$8x^3y : 4x^5y^3$$

a)
$$\frac{10x^2}{5x} = 2x$$

b)
$$\frac{4x^3}{6x^5} = \frac{2}{3x^2}$$

c)
$$\frac{4xy^2}{6xy^2} = \frac{2}{3}$$

b)
$$\frac{4x^3}{6x^5} = \frac{2}{3x^2}$$
 c) $\frac{4xy^2}{6xy^2} = \frac{2}{3}$ d) $\frac{8x^3y}{4x^5y^3} = \frac{2}{x^2y^2}$

3 ▶ POLINOMIOS

Página 90

- 1 Expresa mediante un polinomio cada uno de estos enunciados:
 - a) La suma de un número más su cubo.
 - b) La suma de dos números naturales consecutivos.
 - c) El perímetro de un triángulo isósceles (llama x al lado desigual e y a cada uno de los otros dos lados).

a)
$$x + x^{3}$$

b)
$$x + (x + 1)$$

c)
$$x + 2y$$

2 Di el grado de cada uno de los polinomios siguientes:

a)
$$x^5 - 6x^2 + 3x + 1$$

b)
$$5xy^4 + 2y^2 + 3x^3y^3 - 2xy$$

c)
$$x^2 + 3x^3 - 5x^2 + x^3 - 3 - 4x^3$$

d)
$$2x^2 - 3x - x^2 + 2x - x^2 + x - 3$$

e)
$$3x + 2xy - x^2y^3 - xy + 3x^2y^3 - xy$$

a)
$$x^5 - 6x^2 + 3x + 1$$
 tiene grado 5.

b)
$$5xy^4 + 2y^2 + 3x^3y^3 - 2xy$$
 tiene grado 6.

c)
$$x^2 + 3x^3 - 5x^2 + x^3 - 3 - 4x^3 = -4x^2 - 3$$
 tiene grado 2.

d)
$$2x^2 - 3x - x^2 + 2x - x^2 + x - 3 = -3$$
 tiene grado 0.

e)
$$3x + 2xy - x^2y^3 - xy + 3x^2y^3 - xy = 2x^2y^3 + 3x$$
 tiene grado 5.

a las Enseñanzas Aplicadas 3

Página 91

3 Sean
$$P = x^4 - 3x^3 + 5x + 3$$
, $Q = 5x^3 + 3x^2 - 1$. Halla $P + Q$ y $P - Q$.

$$P = x^4 - 3x^3 + 5x + 3$$

$$Q = 5x^3 + 3x^2 - 1$$

$$P + Q = (x^4 - 3x^3 + 5x + 3) + (5x^3 + 3x^2 - 1) = x^4 + 2x^3 + 3x^2 + 5x + 2$$

$$P - Q = (x^4 - 3x^3 + 5x + 3) - (5x^3 + 3x^2 - 1) = x^4 - 3x^3 + 5x + 3 - 5x^3 - 3x^2 + 1 = x^4 - 8x^3 - 3x^2 + 5x + 4$$

4 Efectúa estos productos:

a)
$$2x(3x^2-4x)$$

b)
$$5(x^3 - 3x)$$

c)
$$4x^2(-2x+3)$$

d)
$$-2x(x^2-x+1)$$

e)
$$-6(x^3-4x+2)$$

f)
$$-x(x^4-2x^2+3)$$

a)
$$2x(3x^2 - 4x) = 6x^3 - 8x^2$$

b)
$$5(x^3 - 3x) = 5x^3 - 15x$$

c)
$$4x^2(-2x+3) = -8x^3 + 12x^2$$

d)
$$-2x(x^2-x+1)=-2x^3+2x^2-2x$$

e)
$$-6(x^3 - 4x + 2) = -6x^3 + 24x - 12$$

f)
$$-x(x^4 - 2x^2 + 3) = -x^5 + 2x^3 - 3x$$

5 Halla los productos siguientes:

a)
$$x(2x + y + 1)$$

c)
$$ab(a+b)$$

e)
$$x^2 y(x + y + 1)$$

g)
$$6x^2y^2(x^2-x+1)$$

i)
$$3a^2b^3(a-b+1)$$

a)
$$x(2x + y + 1) = 2x^2 + xy + x$$

c)
$$ab(a + b) = a^2b + ab^2$$

e)
$$x^2y(x + y + 1) = x^3y + x^2y^2 + x^2y$$

g)
$$6x^2y^2(x^2 - x + 1) = 6x^4y^2 - 6x^3y^2 + 6x^2y^2$$
 h) $-2(5x^3 + 3x^2 - 8) = -10x^3 - 6x^2 + 16x^2$

i)
$$3a^2h^3(a+b+1) = 3a^3h^3 + 3a^2h^4 + 3a^2h^3$$

b)
$$2a^2(3a^2 + 5a^3)$$

d)
$$5(3x^2 + 7x + 11)$$

f)
$$5xy^2(2x + 3y)$$

h)
$$-2(5x^3 + 3x^2 - 8)$$

$$i) -2x(3x^2-5x+8)$$

b)
$$2a^2(3a^2 + 5a^3) = 6a^4 + 10a^5$$

d)
$$5(3x^2 + 7x + 11) = 15x^2 + 35x + 55$$

f)
$$5xy^2(2x + 3y) = 10x^2y^2 + 15xy^3$$

b)
$$2(5x^3 + 3x^2 + 9) = 10x^3 + 6x^2 + 16$$

i)
$$3a^2b^3(a-b+1) = 3a^3b^3 - 3a^2b^4 + 3a^2b^3$$
 j) $-2x(3x^2 - 5x + 8) = -6x^3 + 10x^2 - 16x$

6 Dados los polinomios $P = 3x^2 - 5$, $Q = x^2 - 3x + 2$, R = -2x + 5, calcula:

a)
$$P \cdot Q$$

b)
$$P \cdot R$$

c)
$$Q \cdot R$$

$$P = 3x^2 - 5$$

$$Q = x^2 - 3x + 2$$

$$R = -2x + 5$$

a)
$$P \cdot Q = (3x^2 - 5) \cdot (x^2 - 3x + 2) = 3x^4 - 9x^3 + 6x^2 - 5x^2 + 15x - 10 = 3x^4 - 9x^3 + x^2 + 15x - 10$$

b)
$$P \cdot R = (3x^2 - 5) \cdot (-2x + 5) = -6x^3 + 15x^2 + 10x - 25$$

c)
$$Q \cdot R = (x^2 - 3x + 2) \cdot (-2x + 5) = -2x^3 + 5x^2 + 6x^2 - 15x - 4x + 10 = -2x^3 + 11x^2 - 19x + 10$$

7 Opera y simplifica.

a)
$$2x(3x^2-2) + 5(3x-4)$$

b)
$$(x^2-3)(x+1)-x(2x^2+5x)$$

c)
$$(3x-2)(2x+1)-2(x^2+4x)$$

a)
$$2x(3x^2-2) + 5(3x-4) = 6x^3 - 4x + 15x - 20 = 6x^3 + 11x - 20$$

b)
$$(x^2 - 3)(x + 1) - x(2x^2 + 5x) = x^3 + x^2 - 3x - 3 - 2x^3 - 5x^2 = -x^3 - 4x^2 - 3x - 3$$

c)
$$(3x-2)(2x+1) - 2(x^2+4x) = 6x^2 + 3x - 4x - 2 - 2x^2 - 8x = 4x^2 - 9x - 2$$

8 Extrae factor común en cada caso:

a)
$$2xy + 3xy^2$$

c)
$$2x^2 + 2x + 4$$

e)
$$5x^2 + 10x$$

g)
$$3x^2 + 3x + 3$$

i)
$$5xy + 4x^2$$

k)
$$2y^3 - 8x^2y$$

a)
$$2xy + 3xy^2 = xy(2 + 3y)$$

c)
$$2x^2 + 2x + 4 = 2(x^2 + x + 2)$$

e)
$$5x^2 + 10x = 5x(x+2)$$

g)
$$3x^2 + 3x + 3 = 3(x^2 + x + 1)$$

i)
$$5xy + 4x^2 = x(5y + 4x)$$

k)
$$2y^3 - 8x^2y = 2y(y^2 - 4x^2)$$

b)
$$2x^2 + 2x + 2y$$

d)
$$3x^2 + 4x$$

f)
$$4x^2 + 8x$$

h)
$$6x^2 + 9x - 3$$

i)
$$x^3 + x^2 + x$$

1)
$$4x^2 + 16x^2y - 8$$

b)
$$2x^2 + 2x + 2y = 2(x^2 + x + y)$$

d)
$$3x^2 + 4x = x(3x + 4)$$

f)
$$4x^2 + 8x = 4x(x + 2)$$

h)
$$6x^2 + 9x - 3 = 3(x^2 + 3x - 1)$$

i)
$$x^3 + x^2 + x = x(x^2 + x + 1)$$

1)
$$4x^2 + 16x^2y - 8 = 4(x^2 + 4x^2y - 2)$$

4 DIDENTIDADES

Página 93

1 Completa para que se cumplan estas igualdades:

a)
$$(x+2)^2 = x^2 + \Box x + 4$$

c)
$$(x+7)(x-7) = x^2 - \square$$

e)
$$(-x+3)^2 = x^2 \Box 6x \Box 9$$

a)
$$(x + 2)^2 = x^2 + 4x + 4$$

c)
$$(x + 7)(x - 7) = x^2 - 49$$

e)
$$(-x + 3)^2 = x^2 - 6x + 9$$

b)
$$(x-5)^2 = x^2 - 10x + \square$$

d)
$$(2x-3)^2 = [x^2 - x + 9]$$

f)
$$(2x-1)(2x+1) = [-x^2-1]$$

b)
$$(x-5)^2 = x^2 - 10x + 25$$

d)
$$(2x-3)^2 = 4x^2 - 12x + 9$$

f)
$$(2x-1)(2x+1) = 4x^2-1$$

2 Desarrolla las siguientes expresiones:

a)
$$(x + 1)^2$$

b)
$$(x + 3)^2$$

c)
$$(x-3)^2$$

d)
$$(x + 1)(x - 1)$$

e)
$$(x+3)(x-3)$$

f)
$$(2x-1)^2$$

g)
$$(5x + 2)^2$$

h)
$$(5x + 2y)^2$$

i)
$$(2x-5)(2x+5)$$

a)
$$(x + 1)^2 = x^2 + 2x + 1$$

b)
$$(x + 3)^2 = x^2 + 6x + 9$$

c)
$$(x-3)^2 = x^2 - 6x + 9$$

d)
$$(x + 1)(x - 1) = x^2 - 1$$

e)
$$(x + 3)(x - 3) = x^2 - 9$$

f)
$$(2x-1)^2 = 4x^2 - 4x + 1$$

g)
$$(5x + 2)^2 = 25x^2 + 20x + 4$$

h)
$$(5x + 2y)^2 = 25x^2 + 20xy + 4y^2$$

i)
$$(2x + 5)(2x - 5) = 4x^2 - 25$$

3 Expresa como una suma por una diferencia.

a)
$$x^2 - 49$$

b)
$$x^2 - 81$$

c)
$$x^2 - 100$$

d)
$$4x^2 - 36$$

e)
$$9x^2 - 1$$

f)
$$16x^2 - \frac{1}{4}$$

a)
$$x^2 - 49 = (x + 7)(x - 7)$$

b)
$$x^2 - 81 = (x + 9)(x - 9)$$

c)
$$x^2 - 100 = (x + 10)(x - 10)$$

d)
$$4x^2 - 36 = (2x + 6)(2x - 6)$$

e)
$$9x^2 - 1 = (3x + 1)(3x - 1)$$

f)
$$16x^2 - \frac{1}{4} = \left(4x + \frac{1}{2}\right)\left(4x - \frac{1}{2}\right)$$

4 Expresa como cuadrado de una suma o de una diferencia.

a)
$$x^2 + 16 + 8x$$

b)
$$x^2 + 25 - 10x$$

c)
$$x^2 + 36 - 12x$$

d)
$$x^2 + 36 + 12x$$

e)
$$9x^2 + 4 + 12x$$

f)
$$25x^2 + 1 - 10x$$

a)
$$x^2 + 16 + 8x = (x + 4)^2$$

b)
$$x^2 + 25 - 10x = (x - 5)^2$$

a)
$$x^2 + 16 + 8x = (x + 4)^2$$
 b) $x^2 + 25 - 10x = (x - 5)^2$ c) $x^2 + 36 - 12x = (x - 6)^2$

d)
$$x^2 + 36 + 12x = (x + 6)^2$$

e)
$$9x^2 + 4 + 12x = (3x + 2)^2$$

e)
$$9x^2 + 4 + 12x = (3x + 2)^2$$
 f) $25x^2 + 1 - 10x = (5x - 1)^2$

5 Expresa en forma de producto.

a)
$$x^2 - 1$$

b)
$$x^2 - 4$$

c)
$$4x^2 - 25$$

d)
$$x^2 + 4 + 4x$$

e)
$$x^2 + 2x + 1$$

f)
$$4x^2 + 9 - 12x$$

g)
$$4x^2 + 4x + 1$$

h)
$$x^2 - 2x + 1$$

i)
$$\frac{x^2}{4} + x + 1$$

a)
$$x^2 - 1 = (x + 1)(x - 1)$$

a)
$$x^2 - 1 = (x + 1)(x - 1)$$
 b) $x^2 - 4 = (x + 2)(x - 2)$

c)
$$4x^2 - 25 = (2x + 5)(2x - 5)$$

d)
$$x^2 + 4 + 4x = (x + 2)^2$$

e)
$$x^2 + 2x + 1 = (x + 1)^2$$

f)
$$4x^2 + 9 - 12x = (2x - 3)^2$$

g)
$$4x^2 + 4x + 1 = (2x + 1)^2$$

h)
$$x^2 - 2x + 1 = (x - 1)^2$$

g)
$$4x^2 + 4x + 1 = (2x + 1)^2$$
 h) $x^2 - 2x + 1 = (x - 1)^2$ i) $\frac{x^2}{4} + x + 1 = \left(\frac{x}{2} + 1\right)^2$

6 Simplifica.

a)
$$(x-2)(x+2)-(x^2+4)$$

b)
$$(3x-1)^2 - (3x+1)^2$$

c)
$$2(x-5)^2 - (2x^2 + 3x + 50)$$

d)
$$(2x-4)^2 - (2x+4)(2x-4)$$

a)
$$(x-2)(x+2) - (x^2+4) = x^2-4-x^2-4 = -8$$

b)
$$(3x-1)^2 - (3x+1)^2 = 9x^2 - 6x + 1 - (9x^2 + 6x + 1) = 9x^2 - 6x + 1 - 9x^2 - 6x - 1 = -12x$$

c)
$$2(x-5)^2 - (2x^2 + 3x + 50) = 2(x^2 - 10x + 25) - (2x^2 + 3x + 50) =$$

= $2x^2 - 20x + 50 - 2x^2 - 3x - 50 = -23x$

d)
$$(2x-4)^2 - (2x+4)(2x-4) = 4x^2 + 16 - 16x - (4x^2 - 16) = 4x^2 + 16 - 16x - 4x^2 + 16 = 32 - 16x$$

7 Simplifica.

a)
$$3(x^2 + 5) - (x^2 + 40)$$

b)
$$3x^2 - 2(x+5) - (x+3)^2 + 19$$

c)
$$(x+3)^2 - [x^2 + (x-3)^2]$$

a)
$$3(x^2 + 5) - (x^2 + 40) = 3x^2 + 15 - x^2 - 40 = 2x^2 - 25$$

b)
$$3x^2 - 2(x+5) - (x+3)^2 + 19 = 3x^2 - 2x - 10 - (x^2 + 6x + 9) + 19 =$$

= $3x^2 - 2x - 10 - x^2 - 6x - 9 + 19 = 2x^2 - 8x$

c)
$$(x+3)^2 - [x^2 + (x-3)^2] = x^2 + 6x + 9 - (x^2 + x^2 - 6x + 9) =$$

= $x^2 + 6x + 9 - (2x^2 - 6x + 9) = x^2 + 6x + 9 - 2x^2 + 6x - 9 = -x^2 + 12x$

8 Saca factor común en el numerador y en el denominador y simplifica.

a)
$$\frac{5x-5}{2x^2-2x}$$

b)
$$\frac{3x^3 - 3x^2}{6x^3 - 12x^2}$$

c)
$$\frac{4x^3 - 2x}{6x^4 - 3x^2}$$

a)
$$\frac{5x-5}{2x^2-2x} = \frac{5(x-1)}{2x(x-1)} = \frac{5}{2x}$$

b)
$$\frac{3x^3 - 3x^2}{6x^3 - 12x^2} = \frac{3x^2(x-1)}{6x^2(x-2)} = \frac{x-1}{2(x-2)}$$

c)
$$\frac{4x^3 - 2x}{6x^4 - 3x^2} = \frac{2x(2x^2 - 1)}{3x^2(2x^2 - 1)} = \frac{2}{3x}$$

9 Utiliza las identidades notables para factorizar y, después, simplifica.

a)
$$\frac{x^2-1}{x^2-2x+1}$$

b)
$$\frac{x^2 + 6x + 9}{x^2 - 9}$$

c)
$$\frac{9x^2-4}{9x^2+4-12x}$$

a)
$$\frac{x^2-1}{x^2-2x+1} = \frac{(x-1)(x+1)}{(x-1)^2} = \frac{x+1}{x-1}$$

b)
$$\frac{x^2 + 6x + 9}{x^2 - 9} = \frac{(x+3)^2}{(x+3)(x-3)} = \frac{x+3}{x-3}$$

c)
$$\frac{9x^2 - 4}{9x^2 + 4 - 12x} = \frac{(3x - 2)(3x + 2)}{(3x - 2)^2} = \frac{3x + 2}{3x - 2}$$

10 Reduce.

a)
$$\frac{15x+15}{3x^2+6x+3}$$

b)
$$\frac{x^2 - 5x}{x^3 - 10x^2 + 25x}$$

c)
$$\frac{3x^3-12x}{6x^3-12x^2}$$

a)
$$\frac{15x+15}{3x^2+6x+3} = \frac{15(x+1)}{3(x^2+2x+1)} = \frac{15(x+1)}{3(x+1)^2} = \frac{5}{x+1}$$

b)
$$\frac{x^2 - 5x}{x^3 - 10x^2 + 25x} = \frac{x(x - 5)}{x(x^2 - 10x + 25)} = \frac{x(x - 5)}{x(x - 5)^2} = \frac{1}{x - 5}$$

c)
$$\frac{3x^3 - 12x}{6x^3 - 12x^2} = \frac{3x(x^2 - 4)}{6x^2(x - 2)} = \frac{3x(x + 2)(x - 2)}{6x^2(x - 2)} = \frac{x + 2}{2x}$$

11 Multiplica por 8 la siguiente expresión y simplifica el resultado:

$$\frac{x}{2} + \frac{x}{4} + \frac{x}{8} - \frac{3x}{4} - \frac{1}{4}$$

$$8\left(\frac{x}{2} + \frac{x}{4} + \frac{x}{8} - \frac{3x}{4} - \frac{1}{4}\right) = \frac{8x}{2} + \frac{8x}{4} + \frac{8x}{8} - \frac{24x}{4} - \frac{8}{4} = 4x + 2x + x - 6x - 2 = x - 2$$

12 Multiplica por 9 la expresión siguiente y simplifica el resultado:

$$x - \frac{2x - 3}{9} - \frac{x - 1}{3} - \frac{12x + 4}{9}$$

$$9\left(x - \frac{2x - 3}{9} - \frac{x - 1}{3} - \frac{12x + 4}{9}\right) = 9x - \frac{9(2x - 3)}{9} - \frac{9(x - 1)}{3} - \frac{9(12x + 4)}{9} =$$

$$= 9x - (2x - 3) - 3(x - 1) - (12x + 4) = 9x - 2x + 3 - 3x + 3 - 12x - 4 = -8x + 2$$

13 Multiplica cada expresión por el mínimo común múltiplo de sus denominadores y simplifica:

a)
$$x - \frac{x}{2} + \frac{x-1}{6} - \frac{2x-3}{9}$$

b)
$$\frac{x+1}{5} - \frac{x}{3} + \frac{2x-5}{15} + 2x$$

a) Mín.c.m
$$(2, 6, 9) = 18$$

$$18\left(x - \frac{x}{2} + \frac{x-1}{6} - \frac{2x-3}{9}\right) = 18x - \frac{18x}{2} + \frac{18(x-1)}{6} - \frac{18(2x-3)}{9} =$$

$$= 18x - 9x + 3(x-1) - 2(2x-3) = 18x - 9x + 3x - 3 - 4x + 6 = 8x + 3$$

b) Mín.c.m
$$(5, 3, 15) = 15$$

$$15\left(\frac{x+1}{5} - \frac{x}{3} + \frac{2x-5}{15} + 2x\right) = \frac{15(x+1)}{5} - \frac{15x}{3} + \frac{15(2x-5)}{15} + 30x = \frac{15(x+1)}{15} + \frac{15(2x-5)}{15} + \frac{15(x+1)}{15} + \frac{15(x$$

$$= 3(x + 1) - 5x + (2x - 5) + 30x = 3x + 3 - 5x + 2x - 5 + 30x = 30x - 2$$

EJERCICIOS Y PROBLEMAS

Página 96

Practica

Traducción al lenguaje alebraico

1 Asocia a cada uno de los siguientes enunciados una de las expresiones algebraicas:

0,2x

2x + 1

 $2x + x^2$

1,1x

3x - 1

x-7

- a) A un número se le quita 7.
- b) El doble de un número más su cuadrado.
- c) Un múltiplo de 3 menos 1.
- d) El 20% de un número.
- e) Cuatro veces un número menos sus dos tercios.
- f) El precio de un pantalón aumentado en un 10%.
- g) Un número impar.
- a) A un número se le quita $7 \rightarrow x 7$
- b) El doble de un número más su cuadrado $\rightarrow 2x + x^2$
- c) Un múltiplo de 3 menos $1 \rightarrow 3x 1$
- d) El 20 % de un número $\rightarrow 0.2x$
- e) Cuatro veces un número menos sus dos tercios $\rightarrow 4x \frac{2x}{3}$
- f) El precio de un pantalón aumentado un $10\% \rightarrow 1,1x$
- g) Un número impar $\rightarrow 2x + 1$
- 2 Llamando x a un número entero, expresa en lenguaje algebraico estos enunciados:
 - a) Los tres quintos del número, menos 1.
 - b) Los tres quintos de su anterior.
 - c) La suma del número con su anterior y su siguiente.
 - d) El producto del número por su siguiente.
 - e) La suma del número con los dos que le preceden.
 - f) La suma del número con su cuadrado.

a)
$$\frac{3x}{5} - 1$$

b)
$$\frac{3}{5}(x-1)$$

c)
$$(x-1) + x + (x+1)$$

d)
$$x(x + 1)$$

e)
$$x + (x - 1) + (x - 2)$$
 f) $x + x^2$

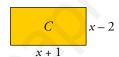
f)
$$x + x^2$$

- 3 Llama x al ancho de un rectángulo y expresa su altura en cada caso:
 - a) La altura es la mitad del ancho.
 - b) La altura es 20 cm menor que el ancho.
 - c) La altura es los tres cuartos del ancho.
 - d) La altura es un 20 % menor que su ancho.

 $x \rightarrow$ ancho del rectángulo

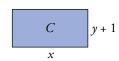
- a) $\frac{x}{2}$
- c) $\frac{3x}{4}$
- d) 0.8x
- 4 Asocia cada una de las siguientes expresiones al perímetro y al área de los rectángulos A, B y C que tienes debajo:
 - a) 12x

b) 4x - 2


c) 4x + 6

d) 4x + 12

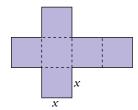
e) $x^2 + 3x$


a) 12x es el área de B

- b) 4x 2 es el perímetro de C.
- c) 4x + 6 es el perímetro de A.
- d) 4x + 12 es el perímetro de B.

- e) $x^2 + 3x$ es el área de A.
- f) $x^2 x 2$ es el área de C.
- 5 Expresa algebraicamente el perímetro y el área de estos rectángulos:

a)
$$A$$
 Perímetro = $2(x + y) = 2x + 2y$
Área = xy


b)
$$B \begin{cases} Perímetro = 2(x - 1 + y) = 2x + 2y - 2 \\ Area = (x - 1)y = xy - y \end{cases}$$

a)
$$A$$

$$\begin{cases}
\text{Perímetro} = 2(x+y) = 2x + 2y \\
\text{Área} = xy
\end{cases}$$
c) C

$$\begin{cases}
\text{Perímetro} = 2(x+y+1) = 2x + 2y + 2 \\
\text{Área} = x(y+1) = xy + x
\end{cases}$$

6 Observa la figura y expresa con un monomio cada uno de los conceptos que tienes debajo:

- a) Su perímetro.
- b) Su área.
- c) El volumen del cubo que se puede formar con esos seis cuadrados.
- a) 14x

b) $6x^{2}$

c) x^3

- 8 Llamando x a la edad de Elvira e y a la de su marido, expresa algebraicamente:
 - a) La edad de la hija mayor, que tiene tres años más de los que su padre le saca a su madre.
 - b) La edad de la hija menor, que tiene tres años menos que su hermana.
 - c) Las edades de Elvira, su marido y sus dos hijas suman 85 años.

a)
$$(y - x) + 3$$

b)
$$y - x$$

c)
$$x + y + (y - x) + 3 + y - x = 85$$

- 9 Traduce a lenguaje algebraico, utilizando dos incógnitas:
 - a) El cuadrado de la suma de dos números.
 - b) El doble del producto de dos números.
 - c) La semisuma de dos números.

$$x \rightarrow$$
 número, $y \rightarrow$ otro número

a)
$$(x + y)^2$$

c)
$$\frac{x+y}{2}$$

Monomios

10 Indica el grado de los siguientes monomios y di cuáles son semejantes:

$$a) -5xy$$

b)
$$(-7x)^3$$

c)
$$8x$$

d)
$$(xy)^2$$

e)
$$\frac{2}{3}$$

f)
$$\frac{4}{5}x^3$$

g)
$$\frac{-3xy}{5}$$

$$h) \frac{1}{2}x$$

a) Grado 2.

e) Grado 0.

Son semejantes: a) y g); b) y f); c) y h)

11 Calcula el valor numérico de los monomios del ejercicio anterior para x = -1 e y = 3.

a)
$$-5 \cdot (-1) \cdot (3) = 15$$

b)
$$(-7 \cdot (-1))^3 = 343$$

c)
$$8 \cdot (-1) = -8$$

d)
$$((-1) \cdot (3))^2 = 9$$

e)
$$\frac{2}{3}$$

f)
$$\frac{4}{5}(-1)^3 = -\frac{4}{5}$$

g)
$$\frac{-3 \cdot (-1) \cdot (3)}{5} = \frac{9}{5}$$

h)
$$\frac{1}{2}(-1) = -\frac{1}{2}$$

12 Reduce.

a)
$$3a + 5a - a - 6a$$

b)
$$5x - x^2 + 7x^2 - 9x + 2$$

c)
$$2a + 7b - 3a + b - 2b$$

d)
$$6x^2y - 3x^2y - 5xy^2 + x^2y + xy^2$$

a)
$$3a + 5a - a - 6a = 8a - 7a = a$$

b)
$$5x - x^2 + 7x^2 - 9x + 2 = 6x^2 - 4x + 2$$

c)
$$2a + 7b - 3a + b - 2b = -a + 6b$$

d)
$$6x^2y - 3x^2y - 5xy^2 + x^2y + xy^2 = 4x^2y - 4xy^2$$

13 Efectúa los siguientes productos de monomios:

a)
$$(6x^2) \cdot (-3x)$$

b)
$$(2xy^2) \cdot (4x^2y)$$

c)
$$\left(\frac{3}{4}x^3\right) \cdot \left(\frac{1}{2}x^3\right)$$

$$\mathbf{d})\left(\frac{1}{4}xy\right)\cdot\left(\frac{3}{2}xy\right)$$

a)
$$6x^2(-3x) = -18x^3$$

b)
$$(2xy^2)(4x^2y) = 8x^3y^3$$

c)
$$\left(\frac{3}{4}x^3\right)\left(\frac{1}{2}x^3\right) = \frac{3}{8}x^6$$

d)
$$\left(\frac{1}{4}xy\right) \cdot \left(\frac{3}{2}xy\right) = \frac{3}{8}x^2y^2$$

14 Resuelve estos cocientes:

a)
$$15x^2:5x^2$$

b)
$$6x^5: 9x^2$$

c)
$$4x^2y : 12xy^2$$

d)
$$\frac{4x^4}{12x^4}$$

$$e) \frac{15x^2y^3}{3xy^2}$$

f)
$$\frac{7xy^3}{14x^2y^2}$$

a)
$$15x^2 : 5x^2 = 3$$

b)
$$6x^5 : 9x^2 = \frac{2}{3}x^3$$

c)
$$4x^2y : 12xy^2 = \frac{x}{3y}$$

d)
$$\frac{4x^4}{12x^4} = \frac{1}{3}$$

e)
$$\frac{15x^2y^3}{3xy^2} = 5xy$$

f)
$$\frac{7xy^3}{14x^2y^2} = \frac{y}{2x}$$

15 Observa el ejemplo y resuelve.

•
$$\left(\frac{1}{5}x^3y\right)$$
: $\left(\frac{1}{10}x^2\right) = \frac{x^3y}{5}$: $\frac{x^2}{10} = \frac{10x^3y}{5x^2} = 2xy$

a)
$$\left(\frac{1}{2}x^2\right)$$
: $\left(\frac{1}{4}x\right)$

b)
$$\left(\frac{1}{3}x^4\right):\left(\frac{1}{6}x^3\right)$$

c)
$$\left(\frac{1}{6}x^2y^2\right):\left(\frac{2}{3}x^2y\right)$$

d)
$$\left(\frac{3}{5}x^2y\right)$$
: $\frac{x^3y}{6}$

a)
$$\left(\frac{1}{2}x^2\right): \left(\frac{1}{4}x\right) = \frac{x^2}{2}: \frac{x}{4} = \frac{4x^2}{2x} = 2x$$

b)
$$\left(\frac{1}{3}x^4\right)$$
: $\left(\frac{1}{6}x^3\right) = \frac{x^4}{3}$: $\frac{x^3}{6} = \frac{6x^4}{3x^3} = 2x$

c)
$$\left(\frac{1}{6}x^2y^2\right):\left(\frac{2}{3}x^2y\right) = \frac{x^2y^2}{6}:\frac{2x^2y}{3} = \frac{3x^2y^2}{12x^2y} = \frac{1}{4}y$$

d)
$$\left(\frac{3}{5}x^2y\right)$$
: $\frac{x^3y}{6} = \frac{3x^2y}{5}$: $\frac{x^3y}{6} = \frac{18x^2y}{5x^3y} = \frac{18}{5x}$

Polinomios

16 Considera estos polinomios:

$$A = x^4 - 3x^2 + 5x - 1$$
 $B = 2x^2 - 6x + 3$

$$C = 2x^4 + x^3 - x - 4$$

Calcula:
$$A + B$$
 $A + C$ $A + B + C$ $A - B$ $C - B$

$$A + B = (x^4 - 3x^2 + 5x - 1) + (2x^2 - 6x + 3) = x^4 - x^2 - x + 2$$

$$A + C = (x^4 - 3x^2 + 5x - 1) + (2x^4 + x^3 - x - 4) = 3x^4 + x^3 - 3x^2 + 4x - 5$$

$$A - B = (x^4 - 3x^2 + 5x - 1) - (2x^2 - 6x + 3) = x^4 - 3x^2 + 5x - 1 - 2x^2 + 6x - 3 = x^4 - 5x^2 + 11x - 4$$

$$C - B = (2x^4 + x^3 - x - 4) - (2x^2 - 6x + 3) = 2x^4 + x^3 - x - 4 - 2x^2 + 6x - 3 = 2x^4 + x^3 - 2x^2 + 5x - 7$$

17 Simplifica estas expresiones:

a)
$$2x^3 - 5x + 3 - 1 - 2x^3 + x^2$$

b)
$$(2x^2 + 5x - 7) - (x^2 - 6x + 1)$$

c)
$$3x - (2x + 8) - (x^2 - 3x)$$

d)
$$7 - 2(x^2 + 3) + x(x - 3)$$

a)
$$2x^3 - 5x + 3 - 1 - 2x^3 + x^2 = x^2 - 5x + 2$$

b)
$$(2x^2 + 5x - 7) - (x^2 - 6x + 1) = 2x^2 + 5x - 7 - x^2 + 6x - 1 = x^2 + 11x - 8$$

c)
$$3x - (2x + 8) - (x^2 - 3x) = 3x - 2x - 8 - x^2 + 3x = -x^2 + 4x - 8$$

d)
$$7 - 2(x^2 + 3) + x(x - 3) = 7 - 2x^2 - 6 + x^2 - 3x = -x^2 - 3x + 1$$

18 Efectúa, reduce y di cuál es el grado del polinomio resultante en cada caso:

a)
$$x(x^2-5) - 3x^2(x+2) - 7(x^2+1)$$

b)
$$5x^2(-3x+1) - x(2x-3x^2) - 2 \cdot 3x$$

a)
$$x(x^2 - 5) - 3x^2(x + 2) - 7(x^2 + 1) = x^3 - 5x - 3x^3 - 6x^2 - 7x^2 - 7 =$$

$$= -2x^3 - 13x^2 - 5x - 7 \rightarrow \text{Grado } 3.$$

b)
$$5x^2(-3x+1) - x(2x-3x^2) - 2 \cdot 3x = -15x^3 + 5x^2 - 2x^2 + 3x^3 - 6x = -12x^3 + 3x^2 - 6x \rightarrow \text{Grado } 3.$$

19 Multiplica.

a)
$$(x + 1) \cdot (x + 3)$$

b)
$$(x-2) \cdot (2x-1)$$

c)
$$(3x+1) \cdot (5x-3)$$

d)
$$3(x+2) \cdot (x-4)$$

a)
$$(x + 1) \cdot (x + 3) = x^2 + 3x + x + 3 = x^2 + 4x + 3$$

b)
$$(x-2) \cdot (2x-1) = 2x^2 - x - 4x + 2 = 2x^2 - 5x + 2$$

c)
$$(3x + 1) \cdot (5x - 3) = 15x^2 - 9x + 5x - 3 = 15x^2 - 4x - 3$$

d)
$$3(x+2) \cdot (x-4) = 3(x^2-4x+2x-8) = 3(x^2-2x-8) = 3x^2-6x-24$$

20 Opera y simplifica.

a)
$$(2x^2 - x + 3) \cdot (x - 3)$$

b)
$$(x^2 - 5x - 1) \cdot (x - 2)$$

c)
$$(3x^3 - 5x^2 + 6) \cdot (2x + 1)$$

d)
$$(2x^2 + x - 3) \cdot (x^2 - 2)$$

a)
$$(2x^2 - x + 3) \cdot (x - 3) = 2x^3 - 6x^2 - x^2 + 3x + 3x - 9 = 2x^3 - 7x^2 + 6x - 9$$

b)
$$(x^2 - 5x - 1) \cdot (x - 2) = x^3 - 2x^2 - 5x^2 + 10x - x + 2 = x^3 - 7x^2 + 9x + 3$$

c)
$$(3x^3 - 5x^2 + 6) \cdot (2x + 1) = 6x^4 + 3x^3 - 10x^3 - 5x^2 + 12x + 6 = 6x^4 - 7x^3 - 5x^2 + 12x + 6$$

d)
$$(2x^2 + x - 3) \cdot (x^2 - 2) = 2x^4 - 4x^2 + x^3 - 2x - 3x^2 + 6 = 2x^4 + x^3 - 7x^2 - 2x + 6$$

21 Piensa y sustituye en tu cuaderno los huecos por los números que faltan.

a)
$$(x + 3) \cdot (x +) = 2x^2 + 5x + 3$$

b)
$$(2x^2 - \Box x) \cdot (\Box x + 2) = 10x^3 - 11x^2 - 6x$$

a)
$$(2x + 3) \cdot (x + 1) = 2x^2 + 5x + 3$$

b)
$$(2x^2 - 3x) \cdot (5x + 2) = 10x^3 - 11x^2 - 6x$$

Factor común

22 Extrae factor común, teniendo en cuenta el ejemplo, cuando corresponda.

$$2x^2 - 6x^3 = 2x^2 \cdot (1 - 3x)$$

a)
$$3x + 3y$$

b)
$$5x - 10y$$

c)
$$2xy - 3x$$

d)
$$2x - 3x^2$$

e)
$$2x - x^2$$

f)
$$10xy^2 + 15x^2y$$

g)
$$x + x^2$$

h)
$$3x^2 + 6x^3$$

i)
$$12xy^3 + 4xy$$

a)
$$3x + 3y = 3(x + y)$$

b)
$$5x - 10y = 5(x - 2y)$$

c)
$$2xy - 3x = x(2y - 3)$$

d)
$$2x - 3x^2 = x(2 - 3x)$$

e)
$$2x - x^2 = x(2 - x)$$

f)
$$10xy^2 + 15x^2y = 5xy(2y + 3x)$$

g)
$$x + x^2 = x(1 + x)$$

h)
$$3x^2 + 6x^3 = 3x^2(1 + 2x)$$

i)
$$12xy^3 + 4xy = 4xy(3y^2 + 1)$$

23 Extrae factor común.

a)
$$5x + 5y + 5z$$

b)
$$5x + 3xy$$

c)
$$3x^2 + 4x$$

d)
$$5x^3 + 3x^2$$

e)
$$2x^4 - 6x^2$$

f)
$$2x^3 + 3x^2 + 5x$$

g)
$$x^6 + x^4 + x$$

h)
$$\frac{1}{2}x^4 + \frac{1}{2}x$$

$$i) 2x^2y - 2xy$$

a)
$$5x + 5y + 5z = 5(x + y + z)$$

c)
$$3x^2 + 4x = x(3x + 4)$$

e)
$$2x^4 - 6x^2 = 2x^2(x^2 - 3)$$

g)
$$x^6 + x^4 + x = x(x^5 + x^3 + 1)$$

i)
$$2x^2y - 2xy = 2xy(x-1)$$

b)
$$5x + 3xy = x(5 + 3y)$$

d)
$$5x^3 + 3x^2 = x^2(5x + 3)$$

f)
$$2x^3 + 3x^2 + 5x = x(2x^2 + 3x + 5)$$

h)
$$\frac{1}{2}x^4 + \frac{1}{2}x = \frac{1}{2}x(x^3 + 1)$$

24 Copia y completa en tu cuaderno.

a)
$$5x(\square + \square) = 5x^2 + 5x$$

b)
$$3x^2(\Box + \Box) = 9x^3 - 6x^2$$

c)
$$\Box (3x-1) = 6x^3 - 2x^2$$

d)
$$(x + y) = x^2y + xy^2$$

a)
$$5x(x+1) = 5x^2 + 5x$$

b)
$$3x^2(3x + (-2)) = 9x^3 - 6x^2$$

c)
$$2x^2(3x-1) = 6x^3 - 2x^2$$

$$d) xy (x+ y) = x^2y + xy^2$$

Identidades notables

25 Desarrolla las siguientes expresiones:

a)
$$(x-1)^2$$

b)
$$(x + 2)^2$$

c)
$$(x + 5)^2$$

d)
$$(2x-3)^2$$

e)
$$(x-6)^2$$

f)
$$(3x-4)^2$$

a)
$$(x-1)^2 = x^2 - 2x + 1$$

b)
$$(x + 2)^2 = x^2 + 4x + 4$$

c)
$$(x + 5)^2 = x^2 + 10x + 25$$

d)
$$(2x-3)^2 = 4x^2 - 12x + 9$$

e)
$$(x-6)^2 = x^2 - 12x + 36$$

f)
$$(3x-4)^2 = 9x^2 - 24x + 16$$

26 Copia y completa.

a)
$$x^2 + 6x + 9 = (\Box + \Box)^2$$

b)
$$x^2 - 8x + 16 = (\Box - \Box)^2$$

c)
$$9x^2 - 6x + 1 = (\Box - \Box)^2$$

d)
$$25x^2 + 30x + 9 = (\Box + \Box)^2$$

a)
$$x^2 + 6x + 9 = (x + 3)^2$$

b)
$$x^2 - 8x + 16 = (x - 4)^2$$

c)
$$9x^2 - 6x + 1 = (3x - 1)^2$$

d)
$$25x^2 + 30x + 9 = (5x + 3)^2$$

27 Expresa como cuadrado de una suma o de una diferencia, como en el ejemplo.

•
$$x^2 + 10x + 25 = x^2 + 2 \cdot 5x + 5^2 = (x + 5)^2$$

a)
$$x^2 + 4x + 4$$

b)
$$x^2 - 10x + 25$$

c)
$$x^2 + 9 + 6x$$

d)
$$x^2 + 49 - 14x$$

e)
$$4x^2 + 4x + 1$$

f)
$$4x^2 + 9 - 12x$$

g)
$$9x^2 - 12x + 4$$

h)
$$x^4 + 4x^2 + 4$$

a)
$$x^2 + 4x + 4 = (x + 2)^2$$

c)
$$x^2 + 9 + 6x = (x + 3)^2$$

e)
$$4x^2 + 4x + 1 = (2x + 1)^2$$

h)
$$9x^2 - 12x + 4 = (3x - 2)^2$$

b)
$$x^2 - 10x + 25 = (x - 5)^2$$

d)
$$x^2 + 49 - 14x = (x - 7)^2$$

f)
$$4x^2 + 9 - 12x = (2x - 3)^2$$

h)
$$x^4 + 4x^2 + 4 = (x^2 + 2)^2$$

28 Transforma en diferencia de cuadrados:

a)
$$(x + 7)(x - 7)$$

c)
$$(3-4x)(3+4x)$$

a)
$$(x+7)(x-7) = x^2 + 49$$

c)
$$(3-4x)(3+4x) = 9-16x^2$$

b)
$$(1 + x)(1 - x)$$

d)
$$(2x-1)(2x+1)$$

b)
$$(1 + x)(1 - x) = 1 - x^2$$

d)
$$(2x-1)(2x+1) = 4x^2-1$$

29 Copia y completa en tu cuaderno.

a)
$$x^2 - 9 = (\square + \square) (\square - \square)$$

b)
$$x^2 - 16 = (\square + \square) (\square - \square)$$

c)
$$9x^2 - 1 = (\Box + \Box) (\Box - \Box)$$

a)
$$x^2 - 9 = (x + 3)(x - 3)$$

b)
$$x^2 - 16 = (x + 4)(x - 4)$$

c)
$$9x^2 - 1 = (3x + 1)(3x - 1)$$

a las Enseñanzas Aplicadas 3

30 Expresa como producto de una suma por una diferencia, como en el ejemplo.

•
$$4x^2 - 25 = 2^2 \cdot x^2 - 5^2 = (2x + 5)(2x - 5)$$

a)
$$9x^2 - 25$$

b)
$$1 - x^2$$

c)
$$4x^2 - 9$$

d)
$$16x^2 - 1$$

e)
$$x^4 - 16$$

f)
$$49 - 4x^2$$

a)
$$(3x + 5)(3x - 5)$$

b)
$$(1 + x)(1 - x)$$

c)
$$(2x + 3)(2x - 3)$$

d)
$$(4x + 1)(4x - 1)$$

e)
$$(x^2 + 4)(x^2 - 4)$$

f)
$$(7 + 2x)(7 - 2x)$$

31 Reduce las siguientes expresiones:

a)
$$(x+1)(x-1)-3(x+2)-x(x+2)$$

b)
$$(2x+3)^2 - (2x-3)^2 - x(x+3)$$

c)
$$\left(x - \frac{1}{3}\right) \cdot \left(x + \frac{1}{3}\right) - \frac{1}{3}(x^2 + 1)$$

a)
$$(x + 1)(x - 1) - 3(x + 2) - x(x + 2) = x^2 - 1 - 3x - 6 - x^2 - 2x = -5x - 7$$

b)
$$(2x+3)^2 - (2x-3)^2 - x(x+3) = 4x^2 + 12x + 9 - (4x^2 - 12x + 9) - x^2 - 3x = 4x^2 + 12x + 9 - 4x^2 + 12x - 9 - x^2 - 3x = -x^2 + 21x$$

c)
$$\left(x - \frac{1}{3}\right)\left(x + \frac{1}{3}\right) - \frac{1}{3}(x^2 + 1) = x^2 - \frac{1}{9} - \frac{x^2 + 1}{3} = \frac{9x^2}{9} - \frac{1}{9} - \frac{3x^2 + 3}{9} = \frac{6x^2 - 4}{9}$$

Otras operaciones

32 Reduce a común denominador y simplifica.

a)
$$\frac{x}{2} + \frac{x}{3}$$

b)
$$\frac{3x}{2} - \frac{x}{4}$$

c)
$$\frac{5x}{4} - x$$

d)
$$\frac{2x}{3} + \frac{x}{2} - x$$

e)
$$\frac{x}{2} + \frac{x}{5} - \frac{3x}{10}$$

a)
$$\frac{x}{2} + \frac{x}{3} = \frac{3x}{6} + \frac{2x}{6} = \frac{5x}{6}$$

b)
$$\frac{3x}{2} - \frac{x}{4} = \frac{6x}{4} - \frac{x}{4} = \frac{5x}{4}$$

c)
$$\frac{5x}{4} - x = \frac{5x}{4} - \frac{4x}{4} = \frac{x}{4}$$

d)
$$\frac{2x}{3} + \frac{x}{2} - x = \frac{4x}{6} + \frac{3x}{6} - \frac{6x}{6} = \frac{x}{6}$$

e)
$$\frac{x}{2} + \frac{x}{5} - \frac{3x}{10} = \frac{5x}{10} + \frac{2x}{10} - \frac{3x}{10} = \frac{4x}{10}$$

33 Reduce, como en los ejemplos.

•
$$\frac{5x-10}{3x-6} = \frac{5(x-2)}{3(x-2)} = \frac{5}{3}$$

$$\frac{x^2 - 6x + 9}{x^2 - 9} = \frac{(x - 3)(x - 3)}{(x + 3)(x - 3)} = \frac{x - 3}{x + 3}$$

a)
$$\frac{4x-8}{3x-6}$$

b)
$$\frac{10x^2 - 5x}{5x^2 + 5x}$$

c)
$$\frac{3x^2-5x}{64-10x^2}$$

d)
$$\frac{5x^2 + 15}{5x^2 - 45}$$

e)
$$\frac{x^2-4}{x^2+2x+4}$$

f)
$$\frac{x^2-6x+9}{6x^2-3x^2}$$

a)
$$\frac{4x-8}{3x-6} = \frac{4(x-2)}{3(x-2)} = \frac{4}{3}$$

b)
$$\frac{10x^2 - 5x}{5x^2 + 5x} = \frac{5x(2x - 1)}{5x(x + 1)} = \frac{2x - 1}{x + 1}$$

c)
$$\frac{3x^2 - 5x}{64 - 10x^2} = \frac{x(3x - 5)}{2(32 - 5x^2)}$$

d)
$$\frac{5x^2+15}{5x^2-45} = \frac{5(x^2+3)}{5(x^2-9)} = \frac{x^2+3}{(x+3)(x-3)}$$

e)
$$\frac{x^2-4}{x^2+2x+4} = \frac{(x+2)(x-2)}{x^2+2x+4}$$

f)
$$\frac{x^2 - 6x + 9}{6x^3 - 3x^2} = \frac{(x - 3)^2}{3x^2(2x - 1)}$$

Resuelve problemas

35 Expresa en lenguaje algebraico:

- a) Un número más siete unidades es igual que su doble menos uno.
- b) Un refresco cuesta 1 € más que una botella de agua. Por tres refrescos y dos aguas he pagado 6 €.
- c) Un rectángulo es tres centímetros más largo que alto y su perímetro mide 34 cm.

a)
$$x + 7 = 2x - 1$$

b) Llamamos x al precio del refresco.

La botella de agua cuesta (x - 1) €

$$3x + 2(x - 1) = 6$$

c) Alto del rectángulo $\rightarrow x$ cm.

Largo del rectángulo \rightarrow (x + 3) cm

Perímetro $\rightarrow 2x + 2(x + 3) = 34$

36 Expresa en lenguaje algebraico.

- a) El agua que queda en un depósito que estaba lleno, del que se saca, primero, 1/3 del contenido, y después, 20 litros. (Capacidad del depósito: x litros).
- b) Lo que pagué por un bocadillo, un zumo y una chocolatina, si el bocadillo cuesta el triple que el zumo, y el zumo, $1 \in \text{más}$ que la chocolatina. (Precio del zumo: $x \in$).

a)
$$x - \frac{1}{3}x - 20$$

b) Precio del zumo $\rightarrow x \in$.

Precio del bocadillo $\rightarrow 3x \in$.

Precio de la chocolatina $\rightarrow (x-1) \in$.

Por los tres artículos pagué $\rightarrow x + 3x + (x - 1)$.

37 Si mezclamos 6 kg de cierta pintura con 9 kg de otra que cuesta 3 € menos por kilo, la mezcla nos sale a 5,20 €/kg. Rellena en tu cuaderno la siguiente tabla, llamando x al precio de la pintura cara:

	CANTIDAD (kg)	PRECIO (€/kg)	COSTE (€)
PINTURA 1	6	\boldsymbol{x}	6 x
PINTURA 2	9		
MEZCLA		5,20	

	CANTIDAD (KG)	PRECIO (€/KG)	COSTE (€)
PINTURA 1	6	\boldsymbol{x}	6 <i>x</i>
PINTURA 2	9	x-3	9(x-3)
MEZCLA	15	5,20	6x + 9(x - 3)

Coste de la mezcla
$$\rightarrow \frac{6x + 9(x - 3)}{15} = 5,20 \in$$

38 Una profesora evalúa, sobre diez, cada uno de los siguientes conceptos:

ACTITUD	TRABAJOS	NOTAS CONTROLES		
\boldsymbol{A}	T	a	b	с

Después, calcula la nota según la fórmula:

Nota =
$$0.10 \cdot A + 0.20 \cdot T + 0.70 \cdot \frac{a+b+c}{3}$$

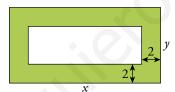
¿Qué porcentaje de la nota total corresponde a la actitud? ¿Y a los trabajos? ¿Y a las notas de los controles?

A la actitud corresponde un $0,10 \rightarrow 10\%$

A los trabajos corresponde un 0,20 \rightarrow 20 %

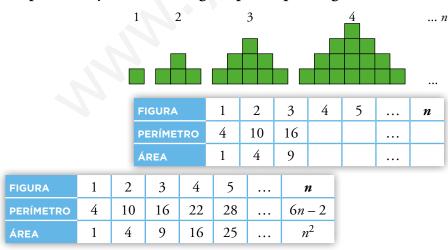
A las notas de los controles corresponde un $0.70 \rightarrow 70\%$

39 La mitad de un número es 20 unidades menor que su triple. ¿Cuál de las siguientes igualdades representa el enunciado anterior?


$$a) \frac{x-20}{2} = 3x$$

b)
$$\frac{x}{2}$$
 – 20 = 3x

c)
$$\frac{x}{2} + 20 = 3x$$


La igualdad que representa el enunciado es la c).

40 Expresa algebraicamente el área de la parte coloreada.

$$A = xy - (x - 4)(x - 4) = xy - (xy - 4x - 4y + 16) = 4x + 4y - 16$$

41 Observa y completa la tabla en tu cuaderno. A la derecha irán las expresiones algebraicas del perímetro y el área de la figura que ocupa el lugar n de la serie.

- Los perímetros forman una progresión aritmética con $a_1 = 4$ y d = 6. Por tanto: $a_n = 4 + (n-1) \cdot 6 = 6n - 2$.
- Las áreas es la sucesión de los cuadrados de los números naturales. Por tanto: n^2 .

42 Expresa algebraicamente el área de cada una de las zonas que se han coloreado en el cuadrado de lado x.

$$A_1 \rightarrow \frac{\frac{x}{2} \cdot \frac{x}{2}}{2} = \frac{x^2}{8}$$

$$A_2 \rightarrow \frac{2\left(x \cdot \frac{x}{2}\right)}{2} = x \cdot \frac{x}{2} = \frac{x^2}{2}$$

$$A_3 \rightarrow x^2 - \frac{x^2}{2} = \frac{x^2}{2}$$

$$A_4 \rightarrow \frac{x^2}{2} - \frac{x^2}{8} = \frac{4x^2}{8} - \frac{x^2}{8} = \frac{3x^2}{8}$$

AUTOEVALUACION

Página 99

- Se mezclan 10 kilos de café de 3 €/kg con x kilos de otro café de 4 €/kg. Describe mediante una expresión algebraica:
 - a) El valor de la mezcla.

b) El precio de un kilo de la mezcla.

a)
$$10 \cdot 3 + x \cdot 4 = 4x + 30 \in$$

b)
$$\frac{4x + 30}{10 + x} \in / \text{kg}$$

2 Reduce.

a)
$$3x + 5x^2 - 5x + 7 - x^2 + 2x$$

b)
$$4(3x^2-2x+3)-3(4x^2-x)$$

a)
$$3x + 5x^2 - 5x + 7 - x^2 + 2x = 4x^2 + 7$$

b)
$$4(3x^2 - 2x + 3) - 3(4x^2 - x) = 12x^2 - 8x + 12 - 12x^2 + 3x = -5x + 12$$

3 Opera.

a)
$$(2x^2) \cdot \left(x + \frac{1}{3}\right)$$

b)
$$\left(\frac{2}{3}x^2y\right)\cdot\left(\frac{3}{2}xy\right)$$

c)
$$(3x^5):(\frac{3}{2}x^2)$$

a)
$$(2x^2) \cdot \left(x + \frac{1}{3}\right)$$
 b) $\left(\frac{2}{3}x^2y\right) \cdot \left(\frac{3}{2}xy\right)$ c) $(3x^5) : \left(\frac{3}{2}x^2\right)$ d) $\left(\frac{1}{2}xy^3\right) : \left(\frac{3}{4}xy^2\right)$

a)
$$(2x^2) \cdot \left(x + \frac{1}{3}\right) = 2x^3 + \frac{2x^2}{3} = \frac{6x^3}{3} + \frac{2x^2}{3} = \frac{6x^3 + 2x^2}{3}$$

b)
$$\left(\frac{2}{3}x^2y\right) \cdot \left(\frac{3}{2}xy\right) = \frac{2 \cdot 3}{3 \cdot 2}x^3y^2 = x^3y^2$$

c)
$$(3x^5): \left(\frac{3}{2}x^2\right) = \frac{3x^5}{1}: \frac{3x^2}{2} = \frac{6x^5}{3x^2} = 2x^3$$

d)
$$\left(\frac{1}{2}xy^3\right): \left(\frac{3}{4}xy^2\right) = \frac{xy^3}{2}: \frac{3xy^2}{4} = \frac{4xy^3}{6xy^2} = \frac{2y}{3}$$

4 Calcula.

a)
$$(2x-1) \cdot (x-3)$$

b)
$$(x^2 - 4x + 3) \cdot (2x - 1)$$

a)
$$(2x-1) \cdot (x-3) = 2x^2 - 6x - x + 3 = 2x^2 - 7x + 3$$

b)
$$(x^2 - 4x + 3) \cdot (2x - 1) = 2x^3 - x^2 - 8x^2 + 4x + 6x - 3 = 2x^3 - 9x^2 + 10x - 3$$

5 Dados $A = x^3 + 5x^2 - 3$ v $B = x^3 - 3x^2 - x$.

Calcula:
$$A + B$$

$$A - B$$

$$3A + 2B$$

$$A + B = (x^3 + 5x^2 - 3) + (x^3 - 3x^2 - x) = 2x^3 + 2x^2 - x - 3$$

$$A - B = (x^3 + 5x^2 - 3) - (x^3 - 3x^2 - x) = 8x^2 + x - 3$$

$$3A + 2B = 3(x^3 + 5x^2 - 3) + 2(x^3 - 3x^2 - x) = 3x^3 + 15x^2 - 9 + 2x^3 - 6x^2 - 2x = 5x^3 + 9x^2 - 2x - 9$$

6 Completa en tu cuaderno.

a)
$$(3x-1)^2 = ...$$

c)
$$4x^2 + 12x + 9 = (...)^2$$

a)
$$(3x-1)^2 = 9x^2 - 6x + 1$$

c)
$$4x^2 + 12x + 9 = (2x + 3)^2$$

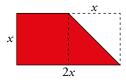
b)
$$(2x + 5) \cdot (2x - 5) = \dots$$

d)
$$9x^2 - 25 = (...) \cdot (...)$$

b)
$$(2x + 5) \cdot (2x - 5) = 4x^2 - 25$$

d)
$$9x^2 - 25 = (3x + 5) \cdot (3x - 5)$$

7 Extrae los factores comunes.


a)
$$3x^2 - 6x$$

a)
$$3x^2 - 6x = 3x(x-2)$$

b)
$$10x^3 + 5x^2$$

b)
$$10x^3 + 5x^2 = 5x^2(2x + 1)$$

8 Expresa algebraicamente el perímetro y el área de la figura coloreada.

La diagonal de un cuadrado de lado x mide $\sqrt{2}x$.

Perímetro
$$\rightarrow 2x + x + x + \sqrt{2}x = (4 + \sqrt{2})x$$

Área
$$\rightarrow x^2 + \frac{x^2}{2} = \frac{2x^2}{2} + \frac{x^2}{2} = \frac{3x^2}{2}$$