PROBLEMA 1.- En un matraz de 1 litro de capacidad se introducen 0,5 moles de HI y parte del mismo se descompone según la reacción: 2HI (g) \Rightarrow H₂ (g) + I₂ (g). Si cuando se alcanza el equilibrio a una temperatura de 400 °C, el valor de K_c es 1,56 · 10⁻², calcula:

- a) El valor de Kp.
- b) La concentración de cada especie en el equilibrio.
- c) La presión total en el equilibrio.

Solución:

- a) Al ser el volumen del reactor 1 L, la concentración de las sustancias coinciden con sus moles. La relación entre las constantes de equilibrio K_c y K_p es: $K_p = K_c \cdot (R \cdot T)^{\Delta n}$, en donde Δn es la diferencia entre los moles de los productos y reactivos de la reacción, que en este caso vale: $\Delta n = 2 - 2 = 0$, siendo el valor de $K_p = K_c \cdot (R \cdot T)^0 \implies K_p = K_c = 0,0156$.
- b) Los moles iniciales y en el equilibrio de disociación del HI, llamando "x" a los moles que se disocian son:

Moles iniciales: Moles en el equilibrio:

Sustituyendo las concentraciones en la expresión de
$$K_c$$
 sale para x:

$$K_c = \frac{[I_2] \cdot [H_2]}{[HI]^2} \implies 0.0156 = \frac{x^2 - moles^2}{(0.5 - 2 \cdot x)^2 - moles^2} \implies 0.94 \cdot x^2 + 0.0318 \cdot x - 0.0039 = 0,$$

que resuelta proporciona para x el valor: x = 0,05 moles, siendo la concentración de cada especies en el

equilibrio: [HI] =
$$\frac{(0.5 - 2 \cdot 0.05) \ moles}{1 \ L} = 0.4 \ M$$
; $[I_2] = [H_2] = \frac{0.05 \ moles}{1 \ L} = 0.05 \ M$.

c) Los moles totales en el equilibrio es: $n_t = 0.4 + 0.05 + 0.05 = 0.5$, que llevados a la ecuación de los gases ideales después de despejar la presión, junto con el valor de las demás variables, y operando se obtiene el valor de ésta:

$$P \cdot V = n \cdot R \cdot T$$
 \Rightarrow $P = \frac{n \cdot R \cdot T}{V} = \frac{0.5 \text{-moles} \cdot 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1} \cdot 673 \cdot K}{1 \cdot L} = 27.6 \text{ atm.}$

Resultado: a)
$$K_p = 0.0156$$
; b) [HI] = 0.4 M; $[I_2] = [H_2] = 0.05$ M; c) $P_t = 27.6$ atm.

PROBLEMA 2.- A 25 °C, el valor de la constante del producto de solubilidad del bromuro de plata es de 7,7 · 10⁻¹³.

- a) Calcula la solubilidad del bromuro de plata en agua pura a esa temperatura, expresada en mg/L.
- b) Explica cómo afectaría a la solubilidad de la misma, la adición de bromuro de sodio sólido.

Solución:

a) El equilibrio de ionización del bromuro de plata es: $AgBr = Br^- + Ag^+$.

De la estequiometría del equilibrio de solubilidad se deduce que, si la solubilidad de la sal en disolución es S moles $\cdot L^{-1}$, la solubilidad de los iones Ag^+ y Br^- es S.

Del producto de solubilidad: $P_s = [Ba^{2+}] \cdot [Br^-] = S \cdot S = S^2$, sustituyendo las variables conocidas por sus valores, despejando S y operando:

$$7.7 \cdot 10^{-13} = S^2 \Rightarrow S = \sqrt{7.7 \cdot 10^{-13}} = \sqrt{77 \cdot 10^{-14}} = 8.77 \cdot 10^{-7} \text{ moles} \cdot L^{-1}, \text{ que expresada en g} \cdot L^{-1} \text{ es: } 8.77 \cdot 10^{-7} \frac{\text{moles}}{L} \cdot \frac{188 \text{ g}}{1 \frac{\text{mol}}{L}} = 1.65 \cdot 10^{-4} \text{ g} \cdot L^{-1}.$$

b) La sal, NaBr, que se adiciona se disuelve totalmente en sus iones, y la concentración de iones Br en la disolución es la debida, casi en exclusividad, a la procedente de la sal añadida, por lo que, al ser la concentración total de iones bromuro en la nueva disolución muy superior a la inicial, el equilibrio de ionización de la sal poco soluble se desplaza hacia la izquierda, es decir, hacia la formación del producto insoluble, disminuyendo su solubilidad.

Resultado: a) $1,65 \cdot 10^{-4} \text{ g} \cdot \text{L}^{-1}$.

PROBLEMA 3.- Se quiere preparar un litro de una disolución 0,3 M de FeSO₄ de densidad 1,02 g · ml⁻¹. En el laboratorio se dispone de sulfato de hierro (II) con una riqueza del 75 %. Calcula:

- a) ¿Cuántos gramos del sulfato de hierro (II) del 75 % de riqueza necesitaremos para obtener la disolución deseada?
- b) ¿Cómo prepararía la disolución? Nombra el material que utilizaría.
- c) Calcula la concentración molal de dicha disolución.

Solución:

a) El litro de disolución contiene 0,3 moles de $FeSO_4$ a los que corresponden la masa: masa = moles \cdot masa molar = 0,3 moles \cdot 151,8 g \cdot mol⁻¹ = 45,54 g.

Al ser la riqueza del sulfato de hierro del 75 %, ha de tomarse del mismo la masa:

$$Masa = 45,54 \cdot \frac{100 \text{ g sulfato impuro}}{75 \cdot \text{g sulfato puro}} = 60,72 \text{ g FeSO}_4 \text{ del } 75 \%.$$

- b) Se pesa la masa de sulfato de hierro (II), se disuelve en un vaso de precipitado en cierta cantidad de agua destilada, se vierte en un matraz de volumen 1 L y se completa de agua hasta enrasar.
- c) La masa de la disolución es: masa = $d \cdot V = 1.02 \frac{g \ disol}{mL \ disol} \cdot 1.000 \ mL \ disol = 1.020 \ g$, y al contener 0,3 moles, 45,54 g de sulfato de hierro (II), la masa de agua es 1.020 g 45,54 g = 974,46 g = 0,974 Kg, siendo la molalidad de la disolución: $m = \frac{moles \ soluto}{kg \ disolvente} = \frac{0.3 \ moles}{0.974 \ kg} = 0.31 \ molal.$

Resultado: a) 60,72 g; c) 0,31 molal.

BLOQUE B

PROBLEMA 1.- En una fábrica se producen 2000 toneladas diarias de cemento con un contenido del 65 % en masa de óxido de calcio que procede de la descomposición del carbonato de calcio según la siguiente reacción: $CaCO_3$ (s) \rightarrow CaO (s) + CO_2 (g)

- a) Calcula el volumen de dióxido de carbono, expresado en m³, que se emitiría diariamente a la atmósfera si la emisión se realiza a 250 °C y a una presión de 1,5 atmósferas.
- b) Si el rendimiento del proceso fuese del 90 %, ¿cuál sería el consumo diario de piedra caliza, si la misma tiene una riqueza del 95 % en carbonato de calcio?

Solución:

a) De las toneladas de cemento se obtienen los moles de CaO que, según la reacción, son los mismos que se obtienen de CO₂. Estos moles son:

n (CaO) =
$$2.000 + \frac{65}{100} \cdot \frac{1.000 - Kg}{1 + conelada} \cdot \frac{1.000 - g}{1 + Kg} \cdot \frac{1 - mol \ CaO}{56 - g - CaO} \cdot \frac{1 \ mol \ CO_2}{1 - mol \ CaO} = 23214,3 \text{ moles CO}_2, \text{ que}$$

llevados a la ecuación de estado de los gases ideales, después de despejar el volumen, sustituir las demás variables por sus valores y operar, se obtiene el volumen de CO_2 que se emiten:

$$P \cdot V = n \cdot R \cdot T$$
 $\Rightarrow V = \frac{n \cdot R \cdot T}{P} = \frac{23.214,3 \text{ moles} \cdot 0,082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1} \cdot 523 \text{ K}}{1,5 \text{ atm}} = 663.711,9 \text{ L} = 663,71 \text{ m}^3.$

b) La estequiometría de la reacción indica que, si el rendimiento de la reacción es del 100 %, un mol de carbonato produce un mol de oxido de calcio, luego, si el cemento producido en un día contiene

23.214,3 moles de CaO, esos son los mismos moles de CaCO₃ empleados si estuviese puro, pero al tener una pureza del 95 %, los moles que han debido utilizarse son: 23.214,3 moles $\cdot \frac{100}{95} = 24.436,1$ moles.

Además, al ser el rendimiento de la reacción del 90 %, los moles de caliza que se han consumido en realidad son: 24.436,1 moles $\cdot \frac{100}{90} = 27.151,22$ moles de piedra caliza.

Resultado: a) V (
$$CO_2$$
) = 663,7 m³; b) 27.151,2 moles.

PROBLEMA 2.- Para el proceso $N_2O(g) + \frac{3}{2}O_2(g) \implies 2NO_2(g)$ a 298 K, calcula:

- a) La entalpía de reacción indicando si es un proceso exotérmico o endotérmico.
- b) La variación de entropía y energía libre. Indica si se trata de un proceso espontáneo en estas condiciones, y en qué intervalo de temperaturas lo será (supón que la entalpía y la entropía no varían con la temperatura).
- c) En qué sentido se desplazaría el equilibrio si:
- 1.- Se aumenta la temperatura a presión constante.
- 2.- Se disminuye la presión total a temperatura constante.

2.- Se distillative in presion total a temperatura constante. DATOS:
$$\Delta H^{o}_{f}(N_{2}O) = 81,6 \text{ kJ} \cdot \text{mol}^{-1}; \Delta H^{o}_{f}(N_{2}O) = 33,2 \text{ kJ} \cdot \text{mol}^{-1}; S^{o}(N_{2}O) = 220,1 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}; S^{o}(N_{2}O) = 240,1 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}; S^{o}(O_{2}O) = 205,2 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}.$$

Solución:

a) La variación de entalpía de la reacción se determina por la expresión:

$$\begin{split} \Delta H^o_{\ r} &= \Sigma a \cdot \Delta H^o_{\ f \ productos} - \Sigma b \cdot \Delta H^o_{\ f \ reactivos} = 2 \cdot \Delta H^o_{\ f} [NO_2) \ (g)] - \Delta H^o_{\ f} [N_2O) \ (g)] \\ \Delta H^o_{\ r} &= 2 \cdot 33.2 \ kJ \cdot mol^{-1} - 81.6 \ kJ \cdot mol^{-1} = -15.2 \ kJ \cdot mol^{-1}. \end{split}$$

El signo menos que precede al valor indica que el calor es desprendido, y por ello, la reacción es exotérmica.

b) Al producirse una disminución en el número de moles gaseosos, ha habido un reordenamiento molecular y, por ello, una disminución en la variación de entropía, es decir, la variación de entropía de la reacción es negativa, $\Delta S^{o} < 0$. Su valor es:

$$\Delta S^{o}_{\ r} = \Sigma \ n \cdot \Delta S^{o}_{\ productos} - \Sigma \ m \cdot \Delta S^{o}_{\ reactivos} = 2 \cdot 240,1 \ J \cdot mol^{-1} - (220,1 + \frac{3}{2} \ 205,2) \ kJ \cdot mol^{-1} = -47,7 \ J \cdot mol^{-1}.$$

La variación de energía libre viene determinada por la expresión $\Delta G^{o} = \Delta H^{o} - T \cdot \Delta S^{o}$, luego, si se sustituyen los valores de entalpía, entropía y temperatura absoluta y se opera se tiene el valor:

$$\Delta G^{\circ} = -15.2 \text{ kJ} \cdot \text{mol}^{-1} - 298 \cdot (-47.7 \cdot 10^{-3}) \text{ kJ} \cdot \text{mol}^{-1} = -0.985 \text{ kJ} \cdot \text{mol}^{-1}$$
.

 $\Delta G^{\circ} = -15.2 \text{ kJ} \cdot \text{mol}^{-1} - 298 \cdot (-47.7 \cdot 10^{-3}) \text{ kJ} \cdot \text{mol}^{-1} = -0.985 \text{ kJ} \cdot \text{mol}^{-1}$. En la expresión $\Delta G^{\circ} = -15.2 \text{ kJ} \cdot \text{mol}^{-1} - \text{T} \cdot (-47.7 \cdot 10^{-3}) \text{ kJ} \cdot \text{mol}^{-1}$ si se cumple que, el valor absoluto de la entalpía de reacción es mayor que el valor absoluto de la temperatura por entropía, es decir, $|\Delta H^{\circ}| > |T \cdot \Delta S^{\circ}|$, se obtiene un valor negativo de la variación de energía libre, y esto tiene lugar para

Despejando la temperatura de la expresión para $\Delta G^{\circ} = 0$, sistema en equilibrio, y operando, sale

el valor:
$$T = \frac{-15,2 \frac{kJ \cdot mol^{-1}}{-47,7 \cdot 10^{-3} \frac{kJ \cdot mo$$

- c) 1.- Si se aumenta la temperatura se suministra calor al sistema, que reacciona absorbiéndolo y desplazando el equilibrio en el sentido endotérmico de la reacción, hacia la izquierda.
- 2.- Si se disminuye la presión aumenta el volumen y disminuye la concentración molar, y por ello, el número de moléculas por unidad de volumen, y el sistema corrige la alteración haciendo que se descomponga el NO2 para producir NO2 y O2 y hacer crecer el número de moléculas por unidad de volumen, por lo que, el sistema evoluciona desplazándose hacia la izquierda, hacia donde hay un mayor número de moles gaseosos.

Resultado: a)
$$-15.2 \text{ kJ} \cdot \text{mol}^{-1}$$
; b) $\Delta S_{r}^{0} = -47.7 \text{ J} \cdot \text{mol}^{-1}$; $\Delta G^{0} = -0.985 \text{ kJ} \cdot \text{mol}^{-1}$; c) Izquierda.

PROBLEMA 3.- Se necesitan 60 cm³ de una disolución 0,1 M de NaOH para reaccionar completamente con 30 cm³ de una disolución de ácido fórmico diluida. Si los volúmenes son aditivos:

a) Calcula la molaridad de la disolución diluida de ácido fórmico y su pH.

b) Indica, razonando la respuesta, si el pH al final de la reacción será ácido, básico o neutro.

DATOS: K_a (HCOOH) = 1,8 · 10⁻⁴.

Solución:

a) La reacción de neutralización es: HCOOH + NaOH → NaHCOO + H₂O.

La reacción indica que un mol de ácido reacciona con un mol de base, luego, si se saben los moles de base también se conocen los de ácido.

Moles de base: n (NaOH) = $M \cdot V = 0.1$ moles \cdot L⁻¹ \cdot 0,060 L = 0,006 moles, que son los moles de ácido contenidos en los 30 mL de disolución ácida, a la que corresponde una concentración:

M (HCOOH) =
$$\frac{moles}{Volumen}$$
 = $\frac{0,006 moles}{0,030 L}$ = 0,2 M.

Si en la disolución del ácido fórmico son x los moles que se disocian, los moles de cada especie al inicio y en el equilibrio son:

segundo grado que aparece, sale para x el valor:

$$K_a = \frac{\left[HCOO^{-}\right] \cdot \left[H_3O^{+}\right]}{\left[HCOOH\right]} \implies 1,8 \cdot 10^{-4} = \frac{x^2}{0,006 - x} \implies x^2 + 0,00018 \cdot x - 0,00018 \cdot 0,006 = 0, \text{ siendo}$$
 el valor de x = 0,000945 moles, que son los moles de $[H_3O^{+}]$ en la disolución, a la que corresponde la concentración: $[H_3O^{+}] = \frac{0,000945 \, moles}{0,030 \, L} = 0,0315 \, \text{M} \, \text{y el pH: pH} = -\log [H_3O^{+}] = -\log 0,0315 = 1,50.$

b) Por tratarse de la sal de un ácido débil y base fuerte, el anión HCOO-, en disolución, sufre hidrólisis según la ecuación: HCOO[−] + H₂O ⇒ HCOOH + OH[−], por lo que al producirse iones hidróxidos, el pH de la disolución final es básico.

Resultado: a) 0.2 M; pH = 1.50; b) Básico.