PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DEL PAÍS VASCO

JULIO - 2012

(RESUELTOS por Antonio Menguiano)

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

Este examen tiene dos opciones. Debes contestar a una de ellas. El examen consta de cinco ejercicios. Se podrán utilizar calculadoras no programables.

OPCIÓN A

- 1°) Dado el sistema $\begin{cases} (m-1)x + y + z = m \\ x + (m-1)y + z = 0 \\ y + z = 1 \end{cases}$
- a) Discutirlo según los valores del parámetro m.
- b) Resolverlo, si es posible, para los casos m = 0 y m = 3.

a)

Las matrices de coeficientes y ampliada son las siguientes:

$$M = \begin{pmatrix} m-1 & 1 & 1 \\ 1 & m-1 & 1 \\ 0 & 1 & 1 \end{pmatrix} y M' = \begin{pmatrix} m-1 & 1 & 1 & m \\ 1 & m-1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

El rango de M en función del parámetro m es el siguiente:

$$|M| = \begin{vmatrix} m-1 & 1 & 1 \\ 1 & m-1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = (m-1)^2 + 1 - (m-1) - 1 = (m-1)(m-1-1) = (m-1)(m-2) = 0 \Rightarrow$$

$$\Rightarrow \underline{m_1 = 1} ;; \underline{m_2 = 2}.$$

$$Para \left\{ \begin{matrix} m \neq 1 \\ m \neq 2 \end{matrix} \right\} \Rightarrow Rango \ M = Rango \ M' = 3 = n^{\circ} \ incógnitas \Rightarrow Compatible \ Deter \min ado$$

Para
$$m=1$$
 es $M'=\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \{F_1=F_3\} \Rightarrow \underline{Rango\ M'=2}$

Para $m = 1 \Rightarrow Rango M = Rango M' = 2 < n^{\circ} incógnitas \Rightarrow Compatible In det er min ado$

$$Para \ m=2 \ es \ M'=\begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \{C_2=C_3\} \Rightarrow Rango \ M' \Rightarrow \{C_1,\ C_2,\ C_4\} \Rightarrow \{C_1,\ C_2,\ C_3\} \Rightarrow \{C_1,\ C_2,\ C_3\} \Rightarrow \{C_1,\ C_3,\ C_4\} \Rightarrow \{C_1,\ C_4,\ C_4\} \Rightarrow \{C_1,\ C_4\} \Rightarrow \{C_1,\ C_4,\ C_4\} \Rightarrow \{C_1,\ C_4,\ C_4\} \Rightarrow \{C_1,\ C_4,\ C_4\} \Rightarrow \{C_1,\ C_4,\ C_4\} \Rightarrow \{C_2,\ C_4\} \Rightarrow \{C_4,\ C_4$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 1 + 2 - 1 = 2 \neq 0 \Rightarrow \underline{Rango \ M' = 3}.$$

Para $m = 2 \Rightarrow Rango M = 2$;; Rango $M' = 3 \Rightarrow Incompatible$

b)

Para m = 0 es sistema resulta $\begin{cases} -x + y + z = 0 \\ x - y + z = 0 \end{cases}$, que es compatible determinado. Repos aplicando la Ragla de Cramer.

solvemos aplicando la Regla de Cramer:

$$x = \frac{\begin{vmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix}}{(-1)(-2)} = \frac{1+1}{2} = \frac{2}{2} = \underbrace{1 = x}$$

$$y = \frac{\begin{vmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}}{2} = \underbrace{\frac{1+1}{2} = \frac{2}{2} = \underbrace{1 = y}}_{2}$$

$$z = \frac{\begin{vmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix}}{2} = \frac{1-1}{2} = \frac{0}{2} = \underline{0} = \underline{z}.$$

Para m = 3 es sistema resulta $\begin{cases} 2x + y + z = 3 \\ x + 2y + z = 0, \text{ que es compatible determinado. Re-} \\ y + z = 1 \end{cases}$

solvemos aplicando la Regla de Cramer:

$$x = \frac{\begin{vmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}}{2 \cdot 1} = \frac{6 + 1 - 2 - 3}{2} = \frac{2}{2} = \underbrace{\frac{1 = x}{2}} \qquad y = \frac{\begin{vmatrix} 2 & 3 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}}{2} = \frac{1 - 2 - 3}{2} = \frac{-4}{2} = \underbrace{\frac{-2 = y}{2}}$$

$$z = \frac{\begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{vmatrix}}{2} = \frac{4+3-1}{2} = \frac{6}{2} = \frac{3=z}{2}.$$

- 2°) Dados los puntos A(-1, 3, 2), B(2, -1, -1) y C(α 2, 7, b):
- a) Determinar los valores de α y b para que dichos puntos estén alineados.
- b) Para los valores calculados en el apartado anterior, obtener la ecuación del plano que pasa por el punto P(0, -3, 5) y es perpendicular al vector \overline{AC} .

a)

Los puntos A, B y C estarán alineados cuando los vectores $\overrightarrow{u} = \overrightarrow{AB}$ y $\overrightarrow{v} = \overrightarrow{AC}$ sean linealmente dependientes.

$$\overrightarrow{u} = \overrightarrow{AB} = B - A = (2, -1, -1) - (-1, 3, 2) = (3, -4, -3).$$

$$\overrightarrow{v} = \overrightarrow{AC} = C - A = (a - 2, 7, b) - (-1, 3, 2) = (a - 1, 4, b - 2).$$

Tiene que cumplirse que
$$\frac{3}{a-1} = \frac{-4}{4} = \frac{-3}{b-2} \Rightarrow \begin{cases} 3 = -(a-1) = -a+1 \Rightarrow \underline{a = -2} \\ 3 = b-2 \Rightarrow \underline{b = 5} \end{cases}$$
.

b) Para $\alpha = -2$ y b = 5 resulta el vector $\vec{v} = \overrightarrow{AC} = (-3, 4, 3)$.

El haz de planos β perpendiculares al vector $\vec{v} = \overrightarrow{AC} = (-3, 4, 3)$ tiene por expresión general $\beta = -3x + 4y + 3z + D = 0$.

De los infinitos planos del haz β , el plano π que pasa por el punto P(0, -3, 5) es el que satisface su ecuación:

$$\beta = -3x + 4y + 3z + D = 0$$

$$P(0, -3, 5)$$

$$\Rightarrow -0 - 4 \cdot 3 + 3 \cdot 5 + D = 0 ;; -12 + 15 + D = 0 ;; \underline{D = -3}.$$

$$\underline{\pi = -3x + 4y + 3z - 3 = 0}$$

$$\pi = -3x + 4y + 3z - 3 = 0$$

- 3°) Dada la función $f(x) = x^3 + Ax^2 + Bx + C$:
- a) Hallar los valores de los parámetros A, B y C para que la gráfica de la función f pase por el punto P(1, 1), tenga un máximo en x = -4 y una tangente horizontal para x = 0.
- b) Determinar los extremos relativos, sus intervalos de crecimiento y decrecimiento y dibujar la gráfica de la función.

a)

Por pasar por P(1, 1) tiene que cumplirse que f(1) = 1:

$$f(1)=1+A+B+C=1$$
;; $A+B+C=0$, (1)

Por tener un máximo para x = -4 tiene que cumplirse que f'(-4) = 0:

$$f'(x) = 3x^2 + 2Ax + B$$
;; $f'(-4) = 0 \Rightarrow 3 \cdot (-4)^2 - 8A + B = 0$;; $8A - B = 48$. (2)

Por tener una tangente horizontal para x = 0 tiene que cumplirse que f'(0) = 0:

$$f'(0)=0 \Rightarrow \underline{B}=0$$
.

Sustituyendo en (2): 8A = 48;; $\underline{A} = \underline{6}$.

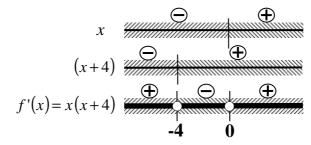
Sustituyendo en (1) los valores hallados: 6+0+C=0;; C=-6.

b)

La función resulta $f(x) = x^3 + 6x^2 - 6$ que por ser polinómica, es continua en su dominio, que es R.

Los periodos de crecimiento y decrecimiento son los intervalos para los cuales su derivada es positiva o negativa, respectivamente.

$$f'(x) = 3x^2 + 12x = 3x(x+4)$$
.



De la observación de la figura anterior se deducen los periodos de crecimiento o decrecimiento, que son los siguientes:

Crecimiento
$$\Rightarrow f'(x) > 0 \ x \in (-\infty, -4) \cup (0, +\infty)$$

Decrecimiento
$$\Rightarrow f'(x) < 0 \ x \in (-4, 0)$$

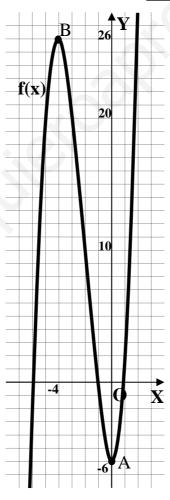
Una función tiene un máximo o mínimo relativo para los valores que anulan la primera derivada; para diferenciar los máximos de los mínimos se recurre a la segunda derivada: si es positiva para los valores que anulan la primera, se trata de un mínimo y si es positiva de un máximo.

$$f'(x) = 0 \implies 3x(x+4) = 0 ;; \underline{x_1 = 0} ;; \underline{x_2 = -4}.$$

$$f''(x) = 6x + 12 = 6(x+2) \Rightarrow \begin{cases} f''(0) = 6 \cdot 2 = 12 > 0 \rightarrow \underline{M\'{nimo relativo para } x = 0} \\ f''(-4) = 6 \cdot (-2) = -12 < 0 \rightarrow \underline{M\'{aximo relativo para } x = -4} \end{cases}$$

$$f(0)=0+0-6=-6 \Rightarrow \underline{Minimo\ relativo:\ A(0,\ -6)}.$$

$$f(-4) = (-4)^3 + 6 \cdot (-4)^2 - 6 = -64 + 96 - 6 = 26 \implies Máximo \ relativo: B(-4, 26).$$



La representación gráfica, aproximada, de la función es la que indica la figura.

4°) Calcular la integral $I = \int \frac{5x-2}{x^2-4} \cdot dx$.

$$I = \int \frac{5x - 2}{x^2 - 4} \cdot dx = \int \frac{5x - 2}{(x + 2)(x - 2)} \cdot dx = \int \left(\frac{A}{x + 2} + \frac{B}{x - 2}\right) \cdot dx = \int \frac{Ax - 2A + Bx + 2B}{x^2 - 4} \cdot dx =$$

$$= \int \frac{(A + B)x + (-2A + 2B)}{x^2 - 4} \cdot dx \Rightarrow A + B = 5 \\ -2A + 2B = -2 \\ -2A + 2B = -2 \\ \Rightarrow A + B = 5 \\ -2A + 2B = -2 \\ \Rightarrow A + B = 5 \\ -2A + 2B = -2 \\ \Rightarrow A + B = 5 \\ \Rightarrow A + B = 5 \\ -2A + 2B = -2 \\ \Rightarrow A + B = 5 \\ \Rightarrow A + B = 5 \\ -2A + 2B = -2 \\ \Rightarrow A + B = 5 \\ \Rightarrow A + B$$

5°) Se llama número capicúa al número entero positivo que expresado en notación decimal se lee de igual forma de derecha a izquierda que de izquierda a derecha, como por ejemplo los números 232 y 8778. Determinar cuántos números capicúa hay menores que 100.000.

Este problema puede interpretarse de dos formas diferentes: admitiendo ceros a la izquierda (como por ejemplo los números de la lotería) o sin considerar ceros a la izquierda. Lo resolvemos de las dos formas.

Admitiendo ceros a la izquierda

Los números de cinco cifras capicúas son de la forma: ABCBA, pudiéndose repetirse los números; es decir, que los dos últimos números son, obligatoriamente iguales a los dos primeros colocados en orden inverso, por lo tanto, habrá tantos capicúas como números con repetición se puedan tomar de tres en tres, o sea:

$$N = VR_{10, 3} = 10^3 = \underline{1000} = N$$

Son capicúas 1000 números.

Sin admitir ceros a la izquierda

1.- Números de una cifra.

Todos los números de una cifra son capicúas, por lo tanto: $n_1 = 10$.

2.- Números de dos cifras.

Son capicúas los que tienen las cifras iguales, excluyendo al 00 (tendría ceros a la izquierda) por lo tanto: $\underline{n}_2 = \underline{9}$.

3.- Números de tres cifras.

Los números de tres cifras capicúas son de la forma: ABA, pudiéndose repetirse los números y teniendo en cuenta que el cero solamente puede estar en el centro; es decir, que es último número es, obligatoriamente, igual al primero, por lo tanto, habrá tantos capicúas como números con repetición se puedan formar de dos cifras, o sea:

$$n_3 = 9 \cdot VR_{10, 1} = 9 \cdot 10 = 90 = n_3$$
.

Son los siguientes:

101	111	121	131	141	151	161	171	181	191
202	212	222	232	242	252	262	272	282	292
909	919	929	939	949	959	969	979	989	999

4.- Números de cuatro cifras.

Los números de cuatro cifras capicúas son de la forma: ABBA, pudiéndose repetirse los números y teniendo en cuenta que no pueden comenzar por cero; es decir, que los dos últimos números son, obligatoriamente iguales a los dos primeros colocados en orden inverso, por lo tanto, habrá tantos capicúas como números con repetición se puedan formar tomados de dos en dos, o sea:

$$n_4 = 9 \cdot VR_{10, 1} = 9 \cdot 10 = 90 = n_4$$
.

Son los siguientes:

5.- Números de cinco cifras.

Los números de cinco cifras capicúas son de la forma: ABCBA, pudiéndose repetirse los números y teniendo en cuenta que no pueden comenzar por cero; es decir, que los dos últimos números son, obligatoriamente iguales a los dos primeros colocados en orden inverso, por lo tanto, habrá tantos capicúas como números con repetición se puedan tomar de tres en tres, o sea:

$$n_5 = 9 \cdot VR_{10, 2} = 9 \cdot 100 = \underline{900} = \underline{N}$$
.

Son los siguientes:

(Como son muchos, solamente se hacen los 90 que comienzan por 1)

$$N_T = n_1 + n_2 + n_3 + n_4 + n_5 = 10 + 9 + 90 + 90 + 900 = \underline{1.099} = \underline{N_T}$$

OPCIÓN B

1°) Sean las matrices $B = \begin{pmatrix} 1+m & 1 \\ 1 & 1-m \end{pmatrix}$ e $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$:

a) Hallar para qué valores de m se verifica que $B^2 = 2B + I$.

b) Calcular la inversa de B para los valores de m del apartado anterior.

a)

$$B^{2} = 2B + I \implies \begin{pmatrix} 1 + m & 1 \\ 1 & 1 - m \end{pmatrix}^{2} = 2 \cdot \begin{pmatrix} 1 + m & 1 \\ 1 & 1 - m \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ;;$$

$$\begin{pmatrix} 1+m & 1 \\ 1 & 1-m \end{pmatrix} \cdot \begin{pmatrix} 1+m & 1 \\ 1 & 1-m \end{pmatrix} = \begin{pmatrix} 2+2m & 2 \\ 2 & 2-2m \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3+2m & 2 \\ 2 & 3-2m \end{pmatrix} ;;$$

$$\begin{pmatrix} 1+2m+m^2+1 & 1+m+1-m \\ 1+m+1-m & 1+1-2m+m^2 \end{pmatrix} = \begin{pmatrix} 3+2m & 2 \\ 2 & 3-2m \end{pmatrix} ;;$$

$$\begin{pmatrix} 2+2m+m^2 & 2 \\ 2 & 2-2m+m^2 \end{pmatrix} = \begin{pmatrix} 3+2m & 2 \\ 2 & 3-2m \end{pmatrix} \Rightarrow \begin{cases} 2+2m+m^2=3+2m \\ 2-2m+m^2=3-2m \end{cases} \Rightarrow m^2=1 \Rightarrow \underline{m=\pm 1}.$$

$$B^2 = 2B + I \quad para \quad m = \pm 1$$

b)

Para m = 1 es $B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ y su inversa es la siguiente:

$$(B/I) = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \{F_1 \leftrightarrow F_2\} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix} \Rightarrow \{F_2 \to F_2 - 2F_1\} \Rightarrow$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -2 \end{pmatrix} \Rightarrow B^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}.$$

Para m = -1 es $B = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ y su inversa es la siguiente:

$$(B/I) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \Rightarrow \{F_1 \leftrightarrow F_2\} \Rightarrow \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \Rightarrow \{F_1 \to F_1 - 2F_2\} \Rightarrow$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \Rightarrow B^{-1} = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}.$$

- 2°) Se consideran los planos $\pi_1 \equiv 3x + 4y + 5z = 0$, $\pi_2 \equiv 2x + y + z = 0$ y el punto A(-1, 2, 1).
- a) Halla el plano α que pasa por el punto A y por la recta intersección de los dos planos.
- b) Calcula un plano β que pase por el punto B(0, 0, -3) y que sea paralelo al plano del apartado anterior.

a)
Los planos π_1 y π_2 determinan la recta $r = \begin{cases} 3x + 4y + 5z = 0 \\ 2x + y + z = 0 \end{cases}$.

Un vector director de r es cualquiera que sea linealmente dependiente del producto vectorial de los vectores normales de los planos que la determinan, que son los siguientes: $\overrightarrow{n_1} = (3, 4, 5)$ y $\overrightarrow{n_2} = (2, 1, 1)$.

$$\overrightarrow{v_r} = \overrightarrow{n_1} \wedge \overrightarrow{n_2} = \begin{vmatrix} i & j & k \\ 3 & 4 & 5 \\ 2 & 1 & 1 \end{vmatrix} = 4i + 10j + 3k - 8k - 5i - 3j = -i + 7j - 5k \Rightarrow \overrightarrow{v_r} = (-1, 7, -5).$$

Como los dos planos pasan por el origen, un punto de r es O(0, 0, 0).

Los puntos O y A(-1, 2, 1) determinan el vector $\overrightarrow{w} = (-1, 2, 1)$.

La ecuación general del plano α pedido es la siguiente:

$$\alpha(A; \overrightarrow{v_r}, \overrightarrow{w}) \equiv \begin{vmatrix} x & y & z \\ -1 & 7 & -5 \\ -1 & 2 & 1 \end{vmatrix} = 0 ;; 7x + 5y - 2z + 7z + 10x + y = 0.$$

$$\underline{\beta \equiv 17x + 6y + 5z = 0}$$

b)

El haz de planos paralelos a $\beta = 17x + 6y + 5z = 0$ tiene por expresión general la siguiente: $\sigma = 17x + 6y + 5z + D = 0$.

De los infinitos planos del haz σ el plano β que contiene al punto B(0, 0, -3) es el que satisface su ecuación:

$$\left. \begin{array}{l} \sigma \equiv 17x + 6y + 5z + D = 0 \\ B(0, \ 0, \ -3) \end{array} \right\} \implies 0 + 0 - 15 + D = 0 \ ;; \ \underline{D = 15} \ .$$

$$\beta = 17x + 6y + 5z + 15 = 0$$

3°) Una tienda vende aceite a 2 euros el litro. Al vender x litros los costes de todo tipo (expresados en euros) son $0.5x + Cx^2$. Se sabe que el beneficio máximo se obtiene vendiendo 750 litros. Encontrar el valor de C y el beneficio máximo obtenido.

Sea la función de gastos totales $G(x) = 0.5x + Cx^2$.

Las ganancias al vender x litros son (2x) euros y el beneficio es la diferencia entre las ganancias y los gastos, por lo cual, la función beneficios es:

$$B(x) = 2x - G(x) = 2x - (0.5x + Cx^{2}) = 2x - 0.5x - Cx^{2} = 1.5x - Cx^{2} = B(x).$$

El beneficio será máximo cuando su derivada sea cero y sea neativa la segunda derivada para los valores que anulen la primera:

 $B'(x)=15-2Cx=0 \implies \text{Esto ocurre cuando se venden 750 litros:}$

$$1'5 - 2C \cdot 750 = 0$$
 ;; $1'5 - 1500C = 0$;; $15 - 15000C = 0$;; $1 - 1000C = 0$ $\Rightarrow C = \frac{1}{1000}$.
 $B''(x) = -2C = -\frac{1}{500} < 0 \Rightarrow \underline{M\acute{a}ximo}$ (como se quería justificar).

El beneficio máximo es:

$$B(750) = 15 \cdot 750 - \frac{1}{1000} \cdot 750^2 = 750 \cdot \left(15 - \frac{3}{4}\right) = 750 \cdot \left(\frac{3}{2} - \frac{3}{4}\right) = 750 \cdot \frac{3}{4} = \underline{5625}.$$

El beneficio máximo es de 562'5 euros.

- 4°) Dadas las funciones f(x) = x, $g(x) = x^2$ y $h(x) = \frac{x^2}{4}$:
- a) Dibuja el recinto finito limitado por las gráfica de las tres funciones.
- b) Calcula el área de dicho recinto.

a) $f(x) = x \begin{vmatrix} \mathbf{Y} \\ 4 \end{vmatrix} \qquad \mathbf{B}$ $g(x) = x^2$ $A \qquad \mathbf{A} \qquad \mathbf{A}$

Los puntos de corte de la recta f(x)=x con las parábolas g(x) y h(x) son los siguientes:

$$\begin{cases} f(x) = x \\ g(x) = x^2 \end{cases} \Rightarrow x = x^2 ;; x^2 - x = 0 ;;$$

$$x(x-1)=0 \Rightarrow \begin{cases} x_1=0 \to \frac{O(0, 0)}{A(1, 1)}. \end{cases}$$

La representación gráfica, aproximada, de la situación es la que se expresa en el gráfico adjunto.

b)

De la observación de la figura se deduce el área pedida, que es la siguiente:

$$S = \int_{0}^{1} \left[g(x) - h(x) \right] dx + \int_{1}^{4} \left[f(x) - h(x) \right] dx = \int_{0}^{1} \left(x^{2} - \frac{x^{2}}{4} \right) dx + \int_{1}^{4} \left(x - \frac{x^{2}}{4} \right) dx =$$

$$= \left[\frac{x^{3}}{3} - \frac{x^{3}}{12} \right]_{0}^{1} + \left[\frac{x^{2}}{2} - \frac{x^{3}}{12} \right]_{1}^{4} = \left[\left(\frac{1}{3} - \frac{1}{12} \right) - 0 \right] + \left[\left(\frac{4^{2}}{2} - \frac{4^{3}}{12} \right) - \left(\frac{1}{2} - \frac{1}{12} \right) \right] = \frac{1}{3} - \frac{1}{12} + 8 - \frac{16}{3} - \frac{1}{2} + \frac{1}{12} =$$

$$= 8 - \frac{15}{3} - \frac{1}{2} = \frac{48 - 30 - 3}{6} = \frac{15}{6} = \frac{5}{2} u^{2} = S.$$

5°) Si en la sucesión de números naturales: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ... se suprimen los cuarenta primeros múltiplos de 5 queda una nueva sucesión. Calcula la suma de los 160 primeros términos de la nueva sucesión.

Las fórmulas del término general y la de la suma de los términos de una progresión aritmética son $a_n = a_1 + (n-1)$ y $S_n = \frac{(a_1 + a_n) \cdot n}{2}$, respectivamente.

El múltiplo de cinco que ocupa el lugar número 40 en la sucesión es:

$$a_{40} = 5 + (40 - 1) \cdot 5 = 5 + 39 \cdot 5 = 40 \cdot 5 = 200$$
.

La sucesión resultante es la sucesión de los primeros 200 números naturales de la que se suprimen los 40 múltiplos de 5.

La suma de los 200 números naturales es:

$$S_{200} = \frac{(1+200) \cdot 200}{2} = 201 \cdot 100 = \underline{20.100}$$
.

La suma de los primeros 40 múltiplos de 5 es:

$$S_5 = \frac{(5+200)\cdot 40}{2} = 205\cdot 20 = \underline{4.100}$$
.

La suma pedida es la diferencia entre las dos sumas halladas:

$$S = S_{200} - S_{5} = 20.100 - 4{,}100 = \underline{16.000}$$
.

La suma pedida es 16.000.