PRUEBA DE ACCESO (LOGSE)

COMUNIDAD DE CATALUÑA

SEPTIEMBRE – 2006

(RESUELTOS por Antonio Menguiano)

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

A continuación encontrará el enunciado de cuatro cuestiones y dos problemas. Escoja tres de las cuatro cuestiones para responder y uno de los dos problemas para resolver. En las respuestas que de tiene que explicar qué se propone hacer y por qué. Puede utilizar cualquier tipo de calculadora, excepto aquellas que usen un sistema operativo tipo Windows/Linux. La puntuación de cada cuestión son dos puntos y el problema cuatro puntos.

OPCIÓN A

CUESTIONES

- 1^a) Sea $f: R \to R$ la función definida por $f(x) = e^x(ax + b)$, donde a y b son números reales.
- a) Calcule los valores de a y b para que la función tenga un extremo relativo en el punto $P(3, e^3)$.
- b) Para los valores de a y b obtenidos, diga que tipo de extremo tiene la función en el citado punto.

a)

Por pertenecer el punto $P(3, e^3)$ a la función tiene que cumplirse lo siguiente:

$$f(3) = e^3 \implies e^3 \cdot (3a + b) = e^3 \; ;; \; 3a + b = 1 \; ;; \; \underline{b} = 1 - 3\underline{a}$$
 (1)

Para que la función tenga un extremo relativo en el punto $P(3, e^3)$ es necesario que se anule la primera derivada para el valor de la abscisa, o sea, para x = 3:

$$f'(x) = e^{x}(ax+b) + e^{x} \cdot a = e^{x}(ax+a+b)$$
;;

$$f'(3) = 0 \implies e^3 \cdot (3a + a + b) = 0 \ ;; \ 4a + b = 0 \ ;; \ \underline{b} = -4\underline{a}$$
 (2)

Resolviendo el sistema formada por las ecuaciones (1) y (2):

$$\begin{vmatrix}
b = 1 - 3a \\
b = -4a
\end{vmatrix} \implies 1 - 3a = -4a \; ;; \; a = 1 \; ;; \; b = -4$$

b)
Para los valores a = 1 y b = -4, la función es $f(x) = e^{x}(x-4)$.

$$f'(x) = e^{x}(x-4) + e^{x} \cdot 1 = \underline{e^{x}(x-3)} = f'(x) \quad ;; \quad f''(x) = e^{x}(x-3) + e^{x} \cdot 1 = \underline{e^{x}(x-2)} = f''(x)$$
$$f''(3) = e^{3} \cdot (3-2) = e^{3} > 0 \implies \text{M\'{i}nimo}.$$

La función tiene un mínimo relativo para x = 3.

2^a) La gráfica de la función $f(x) = \frac{1}{2x+1}$, cuando x > 0, es la que indica la figura:

- a) Encuentre una primitiva de la función f(x).
- b) Calcule el área de la región sombreada.

$$F(x) = \int f(x) \cdot dx = \int \frac{1}{2x+1} \cdot dx \implies \begin{cases} 2x+1=t \\ 2dx=dt \end{cases} dx = \frac{1}{2} \cdot dt \end{cases} \Rightarrow F(x) = \frac{1}{2} \cdot \int \frac{1}{t} \cdot dt = \frac{1}{2} Lt + C = \frac{1}{2$$

$$= \frac{1}{2}L(2x+1) + C = F(x), \quad \forall C \in R$$

b)

$$S = \int_{2}^{4} \frac{1}{2x+1} \cdot dx = \left[\frac{1}{2} L(2x+1) \right]_{2}^{4} = \frac{1}{2} L(2 \cdot 4 + 1) - \frac{1}{2} L(2 \cdot 2 + 1) = \frac{1}{2} L 9 - \frac{1}{2} L 5 = \frac{1}{2} L \frac{9}{5} = \frac{1}{2} L 18 = \frac{1}{2} L \frac{9}{5} = \frac{1}{2} L \frac$$

$$= L \sqrt{1'8} \cong L \ 1'34 \cong \underline{0'29} \ u^2 = S$$

 3^a) Calcule la ecuación de la recta r', paralela a la recta $r = \begin{cases} x + y - z = 0 \\ 2x - y + z = 1 \end{cases}$ que pasa por el punto P(0, 1, 0).

La expresión de la recta r por unas ecuaciones paramétricas es la siguiente:

$$r \equiv \begin{cases} x + y - z = 0 \\ 2x - y + z = 1 \end{cases} \Rightarrow \underline{z = \lambda} \Rightarrow \underline{x + y = \lambda} \\ 2x - y = 1 - \lambda \end{cases} \Rightarrow 3x = 1 ;; \underline{x = \frac{1}{3}} ;; \underline{y = -x + z = -\frac{1}{3} + \lambda = y}$$

$$r \equiv \begin{cases} x = \frac{1}{3} \\ y = -\frac{1}{3} + \lambda \\ z = \lambda \end{cases}$$

Un vector director de la recta r es $\overrightarrow{v} = (0, 1, 1)$.

La recta r' pedida, por ser paralela a r, tiene el mismo vector director; como tiene que pasar por el punto P(0, 1, 0), su ecuación vectorial es la siguiente:

$$r' \equiv (x, y, z) = (0, 1, 0) + \lambda(0, 1, 1)$$

4^a) Determine los extremos de un segmento AB sabiendo que el punto A pertenece al plano $\pi = 2x + y + z = 0$, el punto B pertenece a la recta $r = \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z}{3}$ y el punto medio del segmento es el origen de coordenadas.

La expresión de la recta r por unas ecuaciones paramétricas es $r = \begin{cases} x = 1 + 2\lambda \\ y = 2 - \lambda \end{cases}$, y un $z = 3\lambda$ punto cualquiera de ella tiene la forma $B(1+2\lambda, 2-\lambda, 3\lambda)$.

Por ser el punto medio O(0, 0, 0), el punto perteneciente al plano tiene que tener la expresión $A(-1-2\lambda, -2+\lambda, -3\lambda)$.

Por pertenecer $A(-1-2\lambda, -2+\lambda, -3\lambda)$ al plano π tiene que satisfacer su ecuación:

$$\pi = 2x + y + z = 0 A(-1 - 2\lambda, -2 + \lambda, -3\lambda) \} \Rightarrow 2(-1 - 2\lambda) + (-2 + \lambda) + (-3\lambda) = 0 ;; -2 - 4\lambda - 2 + \lambda - 3\lambda = 0 ;;$$

$$-6\lambda - 4 = 0$$
 ;; $3\lambda + 2 = 0$;; $\lambda = -\frac{2}{3}$

Los puntos A y B son los siguientes:

PROBLEMAS

1°) Considere la parábola de ecuación $y = x^2 + 2x - 3$.

a) Calcule las ecuaciones de las rectas tangentes a la parábola en los puntos de abscisa $x=-1\ y\ x=1.$

b) Calculando el mínimo de la función $y = x^2 + 2x - 3$, encuentre el vértice de la parábola.

- c) Encuentre las intersecciones de la parábola con los ejes y haga una representación gráfica de la parábola y de las tangentes obtenidas en el primer apartado.
- d) Calcule el área comprendida entre la parábola y las rectas tangentes.

a)

Los puntos de tangencia son los siguientes:

$$y = x^{2} + 2x - 3 \implies \begin{cases} x = -1 \implies y_{(-1)} = (-1)^{2} + 2 \cdot (-1) - 3 = 1 - 2 - 3 = -4 \implies \underline{A(-1, -4)} \\ x = 1 \implies y_{(1)} = 1^{2} + 2 \cdot 1 - 3 = 1 + 2 - 3 = 0 \implies \underline{B(1, 0)} \end{cases}$$

La tangente a una curva en un punto tiene por pendiente el valor de la derivada de la función en ese punto, por lo tanto, los valores de las pendientes son:

$$y' = 2x + 2 \implies \begin{cases} x = -1 \implies m_1 = 2 \cdot (-1) + 2 = -2 + 2 = 0 \implies \underline{m_1 = 0} \\ x = 1 \implies m_2 = 2 \cdot 1 + 2 = 2 + 2 = 4 \implies \underline{m_2 = 4} \end{cases}$$

La ecuación de una recta que pasa por un punto conocida la pendiente viene dada por la ecuación $y - y_0 = m(x - x_0)$, por lo cual las tangentes son las siguientes:

$$B(1, 0)$$
 $m_2 = 4$ $\Rightarrow y - 0 = 4 \cdot (x - 1) = 4x - 4 \Rightarrow \underline{t_2 \equiv y = 4x - 4}$

b)

El mínimo de la parábola tiene por abscisa el valor que anula la primera derivada:

$$y' = 2x + 2 = 2(x+1) = 0 \implies \underline{x = -1}$$
 ;; $y_{(-1)} = -4 \implies \underline{V(-1, -4)}$

El valor de la segunda derivada es y''=2>0, lo que justifica el mínimo, que coincide con uno de los puntos obtenidos anteriormente, que como es lógico, tiene por tangente una recta horizontal (pendiente cero).

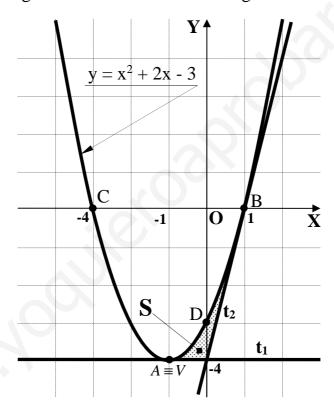
c)

Las intersecciones con los ejes son los puntos siguientes:

$$Eje \ X \implies y = 0 \ ;; \ x^2 + 2x - 3 = 0 \ ;; \ x = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} \implies \begin{cases} x_1 = 1 \implies \underline{B(1, \ 0)} \\ x_2 = -3 \implies \underline{C(-3, \ 0)} \end{cases}$$

$$Eje \ Y \implies x = 0 \ ;; \ y = -3 \implies \underline{D(0, -3)}$$

La representación gráfica de la situación es la siguiente:



d)

Teniendo en cuenta que el área tiene ordenadas negativas y que las ordenadas de la parábola es mayor o igual que las ordenadas de las tangentes en el intervalo correspondiente a la superficie a calcular, el área pedida es la siguiente:

$$S = \int_{-1}^{0} \left[\left(x^{2} + 2x - 3 \right) - \left(-4 \right) \right] \cdot dx + \int_{0}^{1} \left[\left(x^{2} + 2x - 3 \right) - \left(4x - 4 \right) \right] \cdot dx =$$

$$= \int_{-1}^{0} \left(x^{2} + 2x - 3 + 4 \right) dx + \int_{0}^{1} \left(x^{2} + 2x - 3 - 4x + 4 \right) dx = \int_{-1}^{0} \left(x^{2} + 2x + 1 \right) dx + \int_{0}^{1} \left(x^{2} - 2x + 1 \right) dx =$$

$$= \left[\frac{x^{3}}{3} + x^{2} + x \right]_{-1}^{0} + \left[\frac{x^{3}}{3} - x^{2} + x \right]_{0}^{1} = 0 - \left(-\frac{1}{3} + 1 - 1 \right) + \left(\frac{1}{3} - 1 + 1 \right) - 0 = \frac{2}{3} \frac{u^{2}}{3} = S$$

$$= \int_{-1}^{0} \left(x^{2} + 2x - 3 + 4 \right) dx + \int_{0}^{1} \left(x^{2} + 2x - 3 - 4x + 4 \right) dx = \int_{-1}^{0} \left(x^{2} + 2x + 1 \right) dx + \int_{0}^{1} \left(x^{2} - 2x + 1 \right) dx =$$

$$= \left[\frac{x^{3}}{3} + x^{2} + x \right]_{-1}^{0} + \left[\frac{x^{3}}{3} - x^{2} + x \right]_{0}^{1} = 0 - \left(-\frac{1}{3} + 1 - 1 \right) + \left(\frac{1}{3} - 1 + 1 \right) - 0 = \frac{2}{3} \frac{u^{2}}{3} = S$$

$$= \int_{-1}^{0} \left(x^{2} + 2x - 3 + 4 \right) dx + \int_{0}^{1} \left(x^{2} + 2x - 3 - 4x + 4 \right) dx = \int_{0}^{0} \left(x^{2} + 2x + 1 \right) dx + \int_{0}^{1} \left(x^{2} - 2x + 1 \right) dx = \int_{0}^{1} \left(x^{2} + 2x - 3 + 4 \right) dx + \int_{0}^{1} \left(x^{2} + 2x -$$

2°) Considere el sistema de ecuaciones
$$\begin{cases} px + 7y + 8z = 1370 \\ x + y + z = 200 \\ 7x + py + 8z = 1395 \end{cases}$$

- a) Discútalo en función del parámetro p.
- b) Dé la interpretación geométrica en los casos en los que el sistema es incompatible.
- c) Resuelva el sistema para p = 6.

Las matrices de coeficientes y ampliada son las siguientes:

$$M = \begin{pmatrix} p & 7 & 8 \\ 1 & 1 & 1 \\ 7 & p & 8 \end{pmatrix} \quad y \quad M' = \begin{pmatrix} p & 7 & 8 & 1370 \\ 1 & 1 & 1 & 200 \\ 7 & p & 8 & 1395 \end{pmatrix}$$

El rango de M en función del parámetro a es el siguiente:

$$|M| = \begin{vmatrix} p & 7 & 8 \\ 1 & 1 & 1 \\ 7 & p & 8 \end{vmatrix} = 8p + 8p + 49 - 56 - p^2 - 56 = -p^2 + 16p - 63 = 0 ;; p^2 - 16p + 63 = 0$$

$$p = \frac{16 \pm \sqrt{256 - 252}}{2} = \frac{16 \pm \sqrt{4}}{2} = \frac{16 \pm 2}{2} \implies \begin{cases} \frac{p_1 = 9}{p_2 = 7} \end{cases}$$

$$Para \begin{cases} p \neq 7 \\ p \neq 9 \end{cases} \Rightarrow Rango \ M = Rango \ M' = 3 = n^{\circ} \ incógnitas \Rightarrow Compatible \ det \ er \ min \ ado$$

Para
$$p = 9 \Rightarrow M' = \begin{pmatrix} 9 & 7 & 8 & 1370 \\ 1 & 1 & 1 & 200 \\ 7 & 9 & 8 & 1395 \end{pmatrix}$$
 Veámos el rango de $M' \Rightarrow$

$$Para \quad p = 9 \implies M' = \begin{pmatrix} 9 & 7 & 8 & 1370 \\ 1 & 1 & 1 & 200 \\ 7 & 9 & 8 & 1395 \end{pmatrix} \qquad Ve\'{a}mos \quad el \quad rango \quad de \quad M' \implies \\ \{C_1, C_2, C_4\} \implies \begin{vmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{vmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{pmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{pmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{pmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{pmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{pmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 7 & 9 & 1395 \end{pmatrix} = 9 \cdot 1395 + 9 \cdot 1370 + 9800 - 7 \cdot 1370 - 16200 - 7 \cdot 1395 = \\ \{C_1, C_2, C_4\} \implies \begin{pmatrix} 9 & 7 & 1370 \\ 1 & 1 & 200 \\ 1 & 200 \\$$

$$=9 \cdot 2765 - 7 \cdot 2765 - 6400 = 2 \cdot 2765 - 6400 = 5530 - 6400 = -870 \neq 0 \Rightarrow \underline{Rango\ M' = 3}$$

Para
$$p=7 \Rightarrow M' = \begin{pmatrix} 7 & 7 & 8 & 1370 \\ 1 & 1 & 1 & 200 \\ 7 & 7 & 8 & 1395 \end{pmatrix} \Rightarrow \{C_1 = C_2\} \text{ Veamos el Rango de } M' :$$

$$\Rightarrow \left. \left\{ C_2, \ C_3, \ C_4 \right\} \Rightarrow \left| \begin{array}{cccc} 7 & 8 & 1370 \\ 1 & 1 & 200 \\ 7 & 8 & 1395 \end{array} \right| = 7 \cdot 1395 + 8 \cdot 1370 + 11200 - 7 \cdot 1370 - 11200 - 8 \cdot 1395 = \\ \end{array}$$

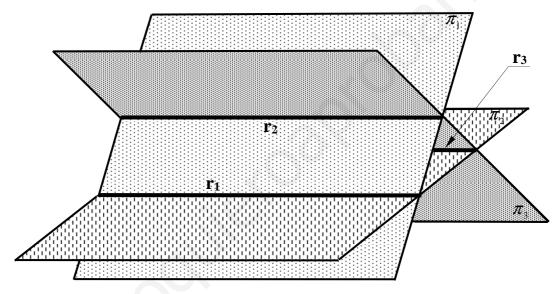
$$=7 \cdot 25 - 8 \cdot 25 = -25 \neq 0 \implies Rango M' = 3$$

$$Para \begin{cases} p=9 \\ p=7 \end{cases} \Rightarrow Rango \ M=2 \ ;; \ Rango \ M'=3 \ \Rightarrow \ Incompatible$$

b)

La interpretación geométrica en los casos de incompatible es la que sigue:

Para p = 9 no existen planos paralelos, por lo tanto los planos se cortan dos a dos de la forma que se indica en la figura siguiente:



Para p = 7 existen dos planos paralelos que son cortados oblicuamente por el tercero.

