

PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD

ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS CURSO 2020-2021 MATEMÁTICAS II

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Este examen consta de 8 ejercicios distribuidos en 2 bloques (A y B) de 4 ejercicios cada uno.
- c) Cada ejercicio tiene un valor máximo de 2.5 puntos.
- d) Se realizarán únicamente cuatro ejercicios, independientemente del bloque al que pertenezcan. En caso de responder a más de cuatro ejercicios, se corregirán únicamente los cuatro que aparezcan físicamente en primer lugar.
- e) Se permitirá el uso de calculadoras que no sean programables, ni gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.
- f) En la puntuación máxima de cada ejercicio están contemplados 0.25 puntos para valorar la expresión correcta de los procesos y métodos utilizados.

BLOQUE A

EJERCICIO 1 (2.5 puntos)

Sabiendo que $\lim_{x\to 0} \left(\frac{x+1}{\ln(x+1)} - \frac{a}{x}\right)$ es finito, calcula a y el valor del límite (\ln denota la función logaritmo neperiano).

EJERCICIO 2 (2.5 puntos)

Sea f la función definida por $f(x) = \frac{ax^2 + b}{a - x}$ (para $x \neq a$).

- a) Halla a y b sabiendo que la gráfica de f pasa por el punto (2,3) y tiene una asíntota oblicua cuya pendiente vale -4. **(1.25 puntos)**
- b) Para a=2 y b=3, calcula las ecuaciones de las rectas tangente y normal a la gráfica de f en el punto de abscisa x=1. (1.25 puntos)

EJERCICIO 3 (2.5 puntos)

Considera la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 + |x - 1|$.

- a) Determina los intervalos de crecimiento y de decrecimiento de f. (1.25 puntos)
- b) Calcula $\int_0^2 f(x) dx$. (1.25 puntos)

EJERCICIO 4 (2.5 puntos)

Considera la función $f : [0, +\infty) \to \mathbb{R}$ definida por $f(x) = xe^x$.

- a) Esboza el recinto limitado por la gráfica de f y las rectas $x=2,\,y=x.$ (1 punto)
- b) Determina el área del recinto anterior. (1.5 puntos)

PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD

ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS
CURSO 2020-2021

MATEMÁTICAS II

BLOQUE B

X EJERCICIO 5 (2.5 puntos)

Considera la matriz $A = \left(\begin{array}{cccc} m & m & m \\ m & m+1 & m \\ m & m & m+2 \end{array} \right).$

- a) ¿Para qué valores de m existe la inversa de la matriz A? Razona la respuesta. (1.5 puntos)
- b) Para m=1, halla $\left(\frac{1}{2}A\right)^{-1}$. (1 punto)

X EJERCICIO 6 (2.5 puntos)

En una cafetería, tres cafés, una tostada y dos zumos de naranja cuestan 7.50 €. Cuatro cafés, una tostada y un zumo de naranja cuestan 7.20 €.

- a) Calcula, de forma razonada, el precio total de dos cafés, una tostada y tres zumos de naranja. (1.5 puntos)
- b) ¿El precio de un zumo de naranja podría ser de 2 €? Razona la respuesta. (1 punto)

EJERCICIO 7 (2.5 puntos)

Considera el punto P(1,0,1) y el plano $\pi \equiv x-y+z+1=0$.

- a) Halla el simétrico del punto P respecto al plano π . (1.25 puntos)
- b) Halla la distancia del punto P al plano π . (1.25 puntos)

EJERCICIO 8 (2.5 puntos)

Considera las rectas

$$r \equiv \frac{x-2}{-2} = y - 1 = \frac{z}{-2}$$
 y $s \equiv \begin{cases} x + 2y = 3 \\ 2y + z = 2 \end{cases}$

- a) Estudia la posición relativa de r y s. (1.25 puntos)
- b) Calcula, si es posible, el plano que contiene a r y a s. (1.25 puntos)