PRUEBA DE ACCESO (EBAU)

UNIVERSIDAD DE CATALUÑA

<u>JUNIO – 2021</u>

(RESUELTOS por Antonio Menguiano)

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

Responde a CUATRO de las seis cuestiones siguientes. En las respuestas, explique siempre qué desea hacer y por qué. Puede utilizar calculadora que no puedan almacenar, transmitir o recibir información.

- 1°) Considere la parábola $y = f(x) = 4 x^2$ y un valor a > 0.
- a) Comprueba que la ecuación de la recta tangente a la gráfica de la parábola en el punto de abscisa x = a es $y = -2ax + a^2 + 4$ y calcule los puntos en que corta esta recta tangente a los ejes de coordenadas.
- b) Calcule el valor de a > 0 pare que el área del triángulo determinado por la recta tangente y los ejes de coordenadas sea mínima.

Para x = a es $f(a) = 4 - a^2$, por lo cual el punto de tangencia es $P(a, 4 - a^2)$.

La pendiente de la tangente de la gráfica de una función en un punto es el valor de la derivada en ese punto.

$$f'(x) = -2x \Rightarrow m = f'(a) \Rightarrow m = -2a$$
.

La expresión de una recta conocido un punto y la pendiente viene dada por la fórmula $y - y_0 = m(x - x_0)$, que aplicada al punto P(0, 1) con m = -4 es:

$$y - (4 - a^2) = -2a(x - a); \ y - 4 + a^2 = -2ax + 2a^2.$$

Queda comprobado que la recta tangente es $y = -2ax + a^2 + 4$.

La recta tangente corta a los ejes de coordenadas en los siguientes puntos:

$$X \Rightarrow y = 0 \\ y = -2ax + a^2 + 4 \Rightarrow -2ax + a^2 + 4 = 0; \quad x = \frac{a^2 + 4}{2a} \Rightarrow \underline{M\left(\frac{a^2 + 4}{2a}, 0\right)}.$$

$$Y \Rightarrow x = 0 \ y = -2ax + a^2 + 4 \Rightarrow y = a^2 + 4 \Rightarrow N(0, a^2 + 4).$$

b)

Por ser rectángulo el triángulo de vértices *OMN*, su área es la mitad del producto de sus catetos:

$$S_{OMN}(a) = \frac{1}{2} \cdot \frac{a^2 + 4}{2a} \cdot (a^2 + 4) = \frac{1}{4} \cdot \frac{(a^2 + 4)^2}{a}$$

Para que el área sea mínima tiene que anularse su primera derivada y ser positiva la segunda derivada para los valores que anulan la primera.

$$S'_{OMN}(a) = \frac{1}{4} \cdot \frac{[2 \cdot (a^2 + 4) \cdot 2a] \cdot a - (a^2 + 4)^2 \cdot 1}{a^2} = \frac{1}{4} \cdot \frac{(a^2 + 4) \cdot [4a^2 - (a^2 + 4)]}{a^2} = \frac{1}{4} \cdot \frac{(a^2 + 4) \cdot (3a^2 - 4)}{a^2}.$$

$$S'_{OMN}(a) = 0 \Rightarrow -\frac{1}{4} \cdot \frac{(a^2+4)\cdot(3a^2-4)}{a^2} = 0; \ (a^2+4)\cdot(3a^2-4) = 0.$$

Por ser
$$a^2 + 4 \neq 0$$
, $\forall a \in R \Rightarrow 4a^2 - 1 = 0$; $3a^2 = 4 \Rightarrow a_1 = -\frac{2}{\sqrt{3}}$, $a_2 = \frac{2}{\sqrt{3}}$.

$$S''_{OMN}(a) = \frac{1}{4} \cdot \frac{[2a \cdot (3a^2 - 4) + (a^2 + 4) \cdot 6a] \cdot a^2 - [(a^2 + 4) \cdot (3a^2 - 4)] \cdot 2a}{a^4} =$$

$$=\frac{1}{4}\cdot\frac{(6a^3-8a+6a^3+24a)\cdot a-2\cdot (3a^4-4a^2+12a^2-16)}{a^3}=\frac{1}{4}\cdot\frac{(12a^3+16a)\cdot a-2\cdot (3a^4+8a^2-16)}{a^3}=$$

$$= \frac{1}{4} \cdot \frac{12a^4 + 16a^2 - 6a^4 + 16a^2 + 32}{a^3} = \frac{1}{4} \cdot \frac{6a^4 + 32a^2 + 32}{a^3} \Rightarrow S''_{OMN}(a) = \frac{3a^4 + 16a^3 + 16}{2a^3}.$$

La solución $a_1 = -\frac{2}{\sqrt{3}}$ carece de sentido lógico.

$$S''_{OMN}(a > 0) > 0 \Rightarrow M$$
ínimo relativo para $a = \frac{2}{\sqrt{3}}$.

El área del triángulo es mínima para $a=\frac{2}{\sqrt{3}}$.

$$px + y + z = 2$$
2°) Considere el sistema $2x + py + p^2z = 1$, dependiente del parámetro real p .
$$2x + y + z = 2$$

- a) Discuta el sistema para los diferentes valores del parámetro p.
- b) Resuelve, si es posible, el sistema para el caso de p = 2.
- a)
 Las matrices de coeficientes y ampliada son las siguientes:

$$M = \begin{pmatrix} p & 1 & 1 \\ 2 & p & p^2 \\ 2 & 1 & 1 \end{pmatrix}$$
 y $M' = \begin{pmatrix} p & 1 & 1 & 2 \\ 2 & p & p^2 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix}$.

El rango de la matriz de coeficientes en función del parámetro p es el siguiente:

$$|M| = \begin{vmatrix} p & 1 & 1 \\ 2 & p & p^2 \\ 2 & 1 & 1 \end{vmatrix} = p^2 + 2 + 2p^2 - 2p - p^3 - 2 = 0; \ p^3 - 3p^2 + 2p = 0;$$

$$p(p^2 - 3p + 2) = 0 \Rightarrow p_1 = 0.$$
 $p^2 - 3p + 2 = 0;$ $p = \frac{3 \pm \sqrt{9-8}}{2} = \frac{3 \pm \sqrt{1}}{2} = \frac{3 \pm 1}{2} \Rightarrow$

$$\Rightarrow p_2 = 1, p_3 = 2.$$

$$Para \begin{cases} p \neq 0 \\ p \neq 1 \\ p \neq 2 \end{cases} \Rightarrow Rang \ M = Rang \ M' = 3 = n^{\varrho} \ inc \acute{o}g. \Rightarrow S. \ C. \ D.$$

$$Para\ p = 0 \Rightarrow M' = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 2 & 0 & 0 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix} \Rightarrow Rang\ M' \Rightarrow \{C_1, C_2, C_4\} \Rightarrow$$

$$\Rightarrow \begin{vmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2 \end{vmatrix} = 4 + 2 - 4 = 2 \neq 0 \Rightarrow Rang M' = 3.$$

$$Para\ p = 1 \Rightarrow M' = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix} \Rightarrow Rang\ M' \Rightarrow \{C_1, C_2, C_4\} \Rightarrow C_1 \Rightarrow C_2 \Rightarrow C_2 \Rightarrow C_3 \Rightarrow C_4 \Rightarrow C_4 \Rightarrow C_4 \Rightarrow C_5 \Rightarrow C_5 \Rightarrow C_6 \Rightarrow C_7 \Rightarrow C_8 \Rightarrow$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 2 \end{vmatrix} = 2 + 4 + 2 - 4 - 1 - 4 = -1 \neq 0 \Rightarrow Rang M' = 3.$$

$$Para \ p = 2 \Rightarrow M' = \begin{pmatrix} 2 & 1 & 1 & 2 \\ 2 & 2 & 4 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix} \Rightarrow \{F_1 = F_3\} \Rightarrow Rang \ M' = 2$$

 $Para\ p = 2 \Rightarrow Rang\ M = Rang\ M' = 2 < n^{\circ}\ inc\'og. \Rightarrow S.\ C.\ I.$

b)

Para p=2 el sistema resulta: 2x + y + z = 2, que es compatible indeter-2x + y + z = 2minado y equivalente al sistema: 2x + y + z = 2 2x + y + z = 2 2x + y + z = 2Haciendo $z = \lambda$:

$$2x + y = 2 - \lambda 2x + 2y = 1 - 4\lambda$$

$$-2x - y = -2 + \lambda 2x + 2y = 1 - 4\lambda$$

$$\Rightarrow y = -1 - 3\lambda.$$

$$2x + y = 2 - \lambda$$
; $2x - 1 - 3\lambda = 2 - \lambda$; $2x = 3 + 2\lambda$; $x = \frac{3}{2} + \lambda$.

Solución:
$$x = \frac{3}{2} + \lambda, y = -1 - \lambda, z = \lambda, \forall \lambda \in R$$
.

- 3°) Sean el punto P(-1,3,1), el plano $\pi \equiv x = y$ y la recta $r \equiv \frac{x-1}{2} = \frac{y}{3} = z 2$.
- a) Calcule las coordenadas del punto P' simétrico a P con respecto al plano π .
- b) De todos los planos que contienen a la recta r, encuentra la ecuación cartesiana del plano β que es perpendicular al plano π .

La recta t que pasa por P(-1,3,1) y es perpendicular al plano $\pi \equiv x - y = 0$ tiene como vector director al vector normal de π : $\vec{n} = (1,-1,0) \Rightarrow t \equiv \begin{cases} x = -1 + \lambda \\ y = 3 - \lambda \end{cases}$.

El punto M, intersección del plano π con la recta t es la solución del sistema que forman:

$$\pi \equiv x - y = 0$$

$$r \equiv \begin{cases} x = -1 + \lambda \\ y = 3 - \lambda \\ z = 1 \end{cases} \Rightarrow -1 + \lambda - (3 - \lambda) = 0;$$

$$-1 + \lambda - 3 + \lambda = 0 \Rightarrow \lambda = 2 \Rightarrow M(1, 1, 1).$$

Tiene que cumplirse que $\overrightarrow{PM} = \overrightarrow{MP'}$.

$$\overrightarrow{PM} = \overrightarrow{OM} - \overrightarrow{OP} = [(1, 1, 1) - (-1, 3, 1)] = (2, -2, 0).$$

$$\overrightarrow{MP'} = \overrightarrow{OP'} - \overrightarrow{OM} = [(x, y, z) - (1, 1, 1)] = (x -, y - 1, z - 1).$$

$$(x - 1 = 2 \to x = 3)$$

$$(2,-2,0) = (x-1,y-1,z-1) \Rightarrow \begin{cases} x-1=2 \to x=3 \\ y-1=-2 \to y=-1 \\ z-1=0 \to z=1 \end{cases} \Rightarrow \underline{P'(3,-1,1)}.$$

Un punto y un vector director de la recta $r \equiv \frac{x-1}{2} = \frac{y}{3} = z - 2$ son Q(1,0,2) y $\overrightarrow{v_r} = (2,3,1)$.

El haz de planos γ que contienen a la recta r y son perpendiculares al plano π tienen como vector normal a cualquier vector que sea linealmente dependiente del producto vectorial del vector director de la recta r y del vector normal del plano π .

$$\overrightarrow{n'_{\gamma}} = \overrightarrow{v_r} \times \overrightarrow{n} = \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 2 & 3 & 1 \end{vmatrix} = -i + 3k + 2k - j = -i - j + 5k \Rightarrow$$

$$\Rightarrow \overrightarrow{n_{\gamma}} = (1, 1, -5).$$

El haz de planos γ tiene por expresión general: $\gamma \equiv x + y - 5z + D = 0$.

De los infinitos planos del haz γ , el plano β , que contiene al punto Q(1,0,2) es el que satisface su ecuación:

$$\gamma \equiv x + y - 5z + D = 0$$

$$Q(1, 0, 2)$$

$$\Rightarrow 1 + 0 - 5 \cdot 2 + D = 0; D - 9 = 0 \Rightarrow D = 9.$$

$$\underline{\beta} \equiv x + y - 5z + 9 = 0.$$

- 4°) Sea la función $f(x) = \frac{Lx}{x}$ definida en el dominio x > 0, donde L es el logaritmo neperiano.
- a) Calcule las coordenadas de un punto de la curva y = f(x) en el que la recta tangente a la curva sea horizontal y analice si la función tiene un extremo relativo en ese punto.
- b) Determine si la función f(x) tiene alguna asíntota horizontal.
- c) Calcule el área de la región delimitada por la curva y = f(x) y las rectas x = 1 y x = e. Haga un dibujo aproximado de la gráfica de la función en el dominio 0 < x < 5, en el que queda representada el área que ha calculado.

a)

La pendiente de la tangente de la gráfica de una función en un punto es el valor de la derivada en ese punto. La pendiente de una recta horizontal es m=0.

$$f'(x) = \frac{\frac{1}{x} \cdot x - Lx \cdot 1}{x^2} = \frac{1 - Lx}{x^2}.$$

$$f'(x) = 0 \Rightarrow \frac{1 - Lx}{x^2} = 0; \quad 1 - Lx = 0; \quad Lx = 1 \Rightarrow x = e.$$

$$f(e) = \frac{Le}{e} = \frac{1}{e} \Rightarrow P\left(e, \frac{1}{e}\right).$$

La condición necesaria para que una función tenga un extremo relativo en un punto es que se anule su primera derivada en ese punto; esta condición, que es necesaria, no es suficiente; para que exista el extremo relativo es necesario que no se anule la segunda derivada para los valores que anulan la primera.

$$f''(x) = \frac{\frac{-1}{x} \cdot x^2 - (1 - Lx) \cdot 2x}{x^4} = \frac{-x - 2x \cdot (1 - Lx)}{x^4} = \frac{-1 - 2 \cdot (1 - Lx)}{x^3} = \frac{-1 - 2 + 2Lx}{x^3} = \frac{2Lx - 3}{x^3}.$$

 $f''(e) = \frac{2Le-3}{e^3} = \frac{2\cdot 1-3}{e^3} = \frac{-1}{e^3} < 0 \Rightarrow \text{M\'aximo relativo para } x = e.$

La función f(x) tiene un máximo relativo en $P\left(e, \frac{1}{e}\right)$.

b)

Las asíntotas horizontales son de la forma y = k; son los valores finitos de la función cuando x tiende a más o menos infinito.

$$k = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{Lx}{x} = \frac{\infty}{\infty} \Rightarrow Ind. \Rightarrow \{L'Hopital\} \Rightarrow \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty}$$

$$=\frac{1}{\infty}=0\Rightarrow \underline{La\ recta\ y=0\ (eje\ X)\ es\ as íntota\ horizonta\ para\ x>0}.$$

c)
En primer lugar, se hace la representación gráfica, aproximada, de la función.

Asíntotas:
$$y = 0$$
; $x = 0$. Máximo: $P\left(e, \frac{1}{e}\right) \approx (2,7; 0,37)$.

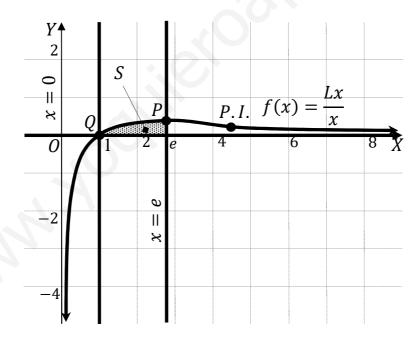
Se trata de una función continua en su dominio $(0, +\infty)$, creciente para x < e y creciente para x > e por tener un máximo (absoluto) para x = e.

Para
$$x = 1 \Rightarrow f(1) = 0 \Rightarrow Q(1, 0)$$
.

De la expresión de la segunda derivada se deduce que tiene un punto de inflexión para 2Lx = 3, por ser:

$$f''(x) = 0 \Rightarrow \frac{2Lx - 3}{x^3} = 0$$
; $2Lx - 3 = 0 \Rightarrow 2Lx = 3$; $x = e^{\frac{3}{2}} \cong 4.5$.

$$f\left(e^{\frac{3}{2}}\right) = \frac{\frac{3}{2}}{e^{\frac{3}{2}}} = \frac{3}{2e^{\frac{3}{2}}} = \frac{3}{2e\sqrt{e}} = \frac{3\sqrt{e}}{2e^{2}} \cong \frac{1}{3} = 0,33 \Rightarrow P.I.\left(e\sqrt{e}, \frac{3\sqrt{e}}{2e^{2}}\right) \approx (5,5;0,33).$$



De la observación de la figura se deduce la superficie a calcular, que es la siguiente:

$$S = \int_1^e f(x) \cdot dx = \int_1^e \frac{Lx}{x} \cdot dx \Rightarrow \begin{cases} Lx = t & |x = e \to t = 1 \\ \frac{1}{x} \cdot dx = dt & |x = 1 \to t = 0 \end{cases} \Rightarrow$$

$$\Rightarrow \int_0^1 t \cdot dt = \left[\frac{t^2}{2}\right]_0^1 = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} u^2 = 0.5 u^2 = S.$$

5°) a) Dada la matriz $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, resuelve la ecuación matricial $A^2X = A - 3I$, donde I es la matriz identidad.

b) Una matriz cuadrada M satisface que $M^3 - 3M^2 + 3M - I = 0$, donde I es la matriz identidad. Justifique que M es invertible y exprese la inversa de M en función de las matrices M e I.

a)

$$A^{2}X = A - 3I; \quad (A^{2})^{-1} \cdot A^{2} \cdot X = (A^{2})^{-1} \cdot (A - 3I);$$

$$I \cdot X = (A^{2})^{-1} \cdot (A - 3I) \Rightarrow \underline{X} = (A^{2})^{-1} \cdot (A - 3I).$$

$$A^{2} = A \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Se obtiene la inversa de A^2 por el método de Gauss-Jordan.

$$(A^{2}|I) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \{F_{1} \leftrightarrow F_{3}\} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix} \Rightarrow$$

$$\Rightarrow \{F_{1} \leftrightarrow F_{3}\} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \Rightarrow (A^{2})^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

$$A - 3I = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \Rightarrow$$

$$\Rightarrow A - 3I = \begin{pmatrix} -3 & 0 & 1 \\ 1 & -3 & 0 \\ 0 & 1 & -3 \end{pmatrix}.$$

$$X = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -3 & 0 & 1 \\ 1 & -3 & 0 \\ 0 & 1 & -3 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 0 & 1 & -3 \\ -3 & 0 & 1 \\ 1 & -3 & 0 \end{pmatrix}.$$

b)
$$M^3 - 3M^2 + 3M - I = 0; M^3 - 3M^2 + 3M - 0 = I;$$

$$M^3 - 3M^2 + 3M = I; M \cdot (M^3 - 3M + 3I) = I.$$

Por el concepto de inversa de una matriz:

$$M \cdot M^{-1} = I$$
, de donde se deduce que: $M^{-1} = M^3 - 3M + 3I$.

Teniendo en cuenta que el módulo del producto de dos matrices es igual al producto de sus módulos y que |I| = 1:

$$|M \cdot M^{-1}| = |I| = 1; \ |M| \cdot |M^{-1}| = 1 \Rightarrow \begin{cases} |M| \neq 0 \\ |M^{-1}| \neq 0 \end{cases}$$

Una matriz es invertible cuando su determinante es distinto de cero.

Queda probado que:

$$M$$
 es invertible y $M^{-1} = M^3 - 3M + 3I$

- 6°) Considere la función $f(x) = e^{x-1} x 1$.
- a) Estudie la continuidad, los extremos relativos y los intervalos de crecimiento y decrecimiento.
- b) Demuestre que la ecuación f(x) = 0 tiene exactamente dos soluciones reales entre x = -1 y x = 3.

a)

La función f(x) es continua en su dominio, que es R, por ser la suma algebraica de funciones continuas.

Una función es creciente o decreciente cuando su primera derivada es positiva o negativa, respectivamente.

$$f'(x) = e^{x-1} - 1.$$

$$f'(x) = 0 \Rightarrow e^{x-1} - 1 = 0; \ e^{x-1} = 1 \Rightarrow x - 1 = 0; \ x = 1.$$

$$f'(x) > 0 \Rightarrow \underline{Crecimiento: x > 1 \in (1, +\infty)}.$$

$$f'(x) < 0 \Rightarrow \underline{Decrecimiento: x < 1 \in (-\infty, 1)}.$$

Para que una función tenga un máximo o mínimo relativo en un punto es condición necesaria que se anule su derivada en ese punto.

Para diferenciar los máximos de los mínimos se recurre a la segunda derivada; si es positiva para el valor que anula la primera, se trata de un mínimo y, si es negativa, de un máximo.

$$f''(x) = e^{x-1}$$
.
 $f''(1) = e^{1-1} = e^0 = 1 > 0 \Rightarrow Minmo \ absoluto \ para \ x = 1$.
 $f(1) = e^{1-1} - 1 - 1 = e^0 - 2 = 1 - 2 = -1 \Rightarrow Min. \Rightarrow P(1, -1)$.

b)

Se sabe del apartado anterior que la función es continua en su dominio y que presenta un mínimo absoluto para x = 1.

Dividiendo el intervalo dado, (-1,3), en los intervalos (-1,1) y (1,3), a la función f(x) le es aplicable el teorema de Bolzano en cada uno de los dos últimos intervalos.

El teorema de Bolzano dice que "si f(x) es una función continua en [a, b] y

toma valores de distinto signo en los extremos del intervalo, entonces $\exists c \in (a, b)$ tal que f(c) = 0".

$$(-1,1) \Rightarrow \begin{cases} f(-1) = e^{-1-1} - (-1) - 1 = e^{-2} = \frac{1}{e^2} > 0 \\ f(1) = e^{1-1} - 1 - 1 = e^0 - 2 = 1 - 2 = -1 < 0 \end{cases}$$

Por ser f(x) monótona decreciente en (-1,1), demuestra que:

La ecuación f(x) = 0 tiene una única raíz real en (-1, 1).

$$(1,3) \Rightarrow \begin{cases} f(1) = e^{1-1} - 1 - 1 = e^0 - 2 = 1 - 2 = -1 < 0 \\ f(3) = e^{3-1} - 3 - 1 = e^2 - 4 \approx 4{,}39 > 0 \end{cases}.$$

Por ser f(x) monótona creciente en (1,3), demuestra que:

La ecuación f(x) = 0 tiene una única raíz real en (1,3).

Queda demostrado que f(x) = 0 tiene exactamente dos raíces reales en (1,3).