Ecuaciones, inecuaciones y sistemas.

1º Resuelve:

a)
$$2\sqrt{x+4} - \sqrt{3x+1} = 2$$

b)
$$12x^4 - 7x^3 - 31x^2 - 8x + 4 = 0$$

c)
$$\log_3(x+1) - 2\log_3(1-x) = 1$$

d)
$$3^{-x+1} + 9 = 3^{x-1}$$
 (redondea la solución a la 2^a cifra decimal)

e)
$$\frac{1-2x}{x^2+3x} \le 0$$

2º Estudia el número de soluciones de la ecuación $x^2 + mx + 2m - 3 = 0$ según los valores de m

La puntuación máxima de cada uno de los ejercicios será 10 puntos el 1º y 2 puntos el 2º.

1°

a)
$$2\sqrt{x+4} - \sqrt{3x+1} = 2$$

 $2\sqrt{x+4} = 2 + \sqrt{3x+1} \Leftrightarrow (2\sqrt{x+4})^2 = (2 + \sqrt{3x+1})^2 \Leftrightarrow 4(x+4) = 4 + 4\sqrt{3x+1} + 3x + 1$
 $\Leftrightarrow x+11 = 4\sqrt{3x+1} \Leftrightarrow (x+11)^2 = (4\sqrt{3x+1})^2$
 $\Leftrightarrow x^2 + 22x + 121 = 16(3x+1) \Leftrightarrow x^2 - 26x + 105 = 0$, resolviendo $x = 5, x = 21$.

Comprobación:

$$x = 5 \Rightarrow 2\sqrt{5+4} - \sqrt{3\cdot 5+1} = 2$$
, válida
 $x = 21 \Rightarrow 2\sqrt{21+4} - \sqrt{3\cdot 21+1} = 2$, válida

b)
$$12x^4 - 7x^3 - 31x^2 - 8x + 4 = 0$$

Se descompone el polinomio $P(x) = 12x^4 - 7x^3 - 31x^2 - 8x + 4$, las raíces del polinomio serán las soluciones de la ecuación

Los divisores del término independiente $4:\pm 1,\pm 2,\pm 4$, aplicando el teorema del resto se encuentran dos raíces enteras:

$$P(-1) = 12(-1)^4 - 7(-1)^3 - 31(-1)^2 - 8(-1) + 4 = 0$$

$$P(2) = 12(2)^4 - 7(-2)^3 - 31(2)^2 - 8(2) + 4 = 0$$

−1 y 2 son raíces de P(x), dividiendo mediante la regla de Rufino se obtiene

$$P(x) = (x+1)(x-2)(12x^2 + 5x - 2)$$

La solución de la ecuación de 2° grado $12x^2 + 5x - 2 = 0$ proporciona el resto de raíces:

$$x = \frac{-5 \pm \sqrt{24 - 4 \cdot 12 \cdot (-2)}}{24} = \begin{cases} \frac{-5 + 11}{24} = \frac{1}{4} \\ \frac{-5 - 11}{24} = \frac{-3}{4} \end{cases}$$

Descomposición: P(x) = 12(x+1)(x-2)(x-1/4)(x+3/4)Soluciones: -1, 2, 1/4 y -3/4.

c)
$$\log_3(x+1) - 2\log_3(1-x) = 1$$

 $\Leftrightarrow \log_3 \frac{(x+1)}{(1-x)^2} = \log_3 3$
 $\Leftrightarrow \frac{(x+1)}{(1-x)^2} = 3 \Leftrightarrow x+1 = 3(1-x)^2$
 $\Leftrightarrow 3x^2 - 7x + 2 = 0$
 $\Leftrightarrow x = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} = \frac{7 \pm \sqrt{49 - 24}}{6} = \begin{cases} 2\\1/3 \end{cases}$

Comprobación de las soluciones en la ecuación problema: $x = 2 \Rightarrow \log_3(2+1) - 2\log_3(1-2) = 2$, tenemos el logaritmo de un número negativo, por lo que **no es válida** la solución

$$x = 1/3 \Rightarrow \log_3(1/3+1) - 2\log_3(1-1/3) = \log_3(4/3) - 2\log_3(2/3) = \log_3(4/3) - \log_3(4/9)$$

$$= \log_3 \frac{4/3}{4/9} = \log_3 3 = 1 \Rightarrow$$
solución válida.

d)
$$3^{-x+1} + 9 = 3^{x-1}$$

Se define una nueva variable $3^x = y \Leftrightarrow x = \log_3 y$

e)
$$\frac{1-2x}{x^2+3x} \le 0$$

Se descompone en factores el numerador y el denominador; se estudia el signo de cada factor y el signo de la fracción.

Numerador: $(1-2x) = 2 \cdot \left(\frac{1}{2} - x\right)$, raíz: x=1/2.

Denominador: $x^2 + 3x = x \cdot (x+3)$, raíces: x=0, x=-3.

	$x \in (-\infty, -3)$	x = -3	$x \in (-3,0)$	x = 0	$x \in (0, \frac{1}{2})$	$x = \frac{1}{2}$	$x \in (\frac{1}{2}, \infty)$
1-2x	+		+		+	0	_
X	_		1	0	+		+
x + 3	_	0	+		+		+
$\frac{1-2x}{x^2+3x}$	+	No existe	1	No existe	+	0	_

La solución será $x \in (-3,0) \cup \left[\frac{1}{2}, +\infty\right)$

2º El número de soluciones de una ecuación de 2º grado depende del signo del discriminante.

Soluciones
$$x = \frac{-m \pm \sqrt{m^2 - 4(2m - 3)}}{2}$$
, siendo $\Delta = \underline{m^2 - 4(2m - 3)}$ el discriminante.

 $\Delta < 0 \Rightarrow 0$ soluciones reales

 $\Delta = 0 \Rightarrow 1$ solución real (doble)

 $\Delta > 0 \Rightarrow 2$ soluciones reales

El problema se reduce a estudiar el signo de $m^2 - 4(2m-3)$

 \Leftrightarrow m² - 8m + 12 , resolviendo la ecuación de 2º grado m² - 8m + 12 = 0 ,

$$m = \frac{8 \pm \sqrt{8^2 - 4 \cdot 12}}{2} = \begin{cases} 6 \\ 2 \end{cases} \Rightarrow , m^2 - 4(2m - 3) = (m - 2)(m - 6)$$

El signo del discriminante viene dado por la siguiente tabla, junto con la interpretación del número de soluciones de la ecuación problema.

	$m \in (-\infty, 2)$	m = 2	$m \in (2,6)$	m = 6	$m \in (6, +\infty)$
(m-2)	_	0	+	4	+
(m-6)	_	-4	_	0	+
(m-2)(m-6)	+	0	_	0	+
Interpretación (número de soluciones reales)	2	1	0	1	2