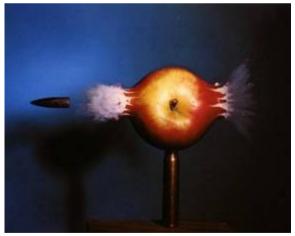
Módulo 1: Mecánica Cantidad de movimiento (momentum)

Un objeto A golpea a un objeto B. ¿Qué pasa?

Cantidad de movimiento

La cantidad de movimiento de un objeto es,


Cantidad de movimiento = Masa·Velocidad

$p=m\cdot v$

Ejemplos de objetos con una cantidad de movimiento grande sería un portaaviones (masa muy grande) y una bala (velocidad muy grande).

Cantidad de movimiento

- También se le llama momento lineal, o simplemente, momento
- Da una medida de la dificultad de llevar un objeto que se mueve hasta el reposo
- Por ejemplo, un camión tiene mayor cantidad de movimiento que un coche moviéndose a igual velocidad
- Hace falta una fuerza mayor para detenerlo en un tiempo determinado que para detener el coche en el mismo tiempo.

Cuestiones sencillas

Un coche de 2 toneladas, yendo a 60 km/h. Choca contra un camión de 5 toneladas que va a 20 km/h.

¿Qué vehículo tiene más cantidad de movimiento, el coche o el camión?

¿Cuál debe ser la velocidad del coche para que su cantidad de movimiento fuese igual a la del camión?

Cantidad de movimiento y fuerza

- Los cambios en la cantidad de movimiento pueden suceder cuando hay un cambio en la masa, en la velocidad o en ambas.
- La masa suele permanecer constante, por lo que lo que suele cambiar es la velocidad.
- Si cambia la velocidad es que hay aceleración, y si hay aceleración es que hay una fuerza neta actuando sobre el objeto
- Pero también depende del tiempo en el que actúe la fuerza.
 - Si una fuerza no muy grande se aplica durante poco tiempo, se producirá un cambio pequeño de su cantidad de movimiento.
 - Pero si esa misma fuerza la aplico durante un tiempo más largo, el cambio será mayor.

Es decir, la variación de la cantidad de movimiento depende de la fuerza y del intervalo de tiempo.

Impulso

Se define el impulso que actúa sobre un objeto como,

(Impulso) = (Fuerza sobre un objeto)·(Intervalo de tiempo)

iOJO! Los objetos tienen cantidad de movimiento.

El impulso actúa sobre un objeto.

Siempre que ejerces una fuerza sobre algo, también ejerces un impulso

Impulso & Cantidad de movimiento

El impulso está relacionado con la cantidad de movimiento por,

(Variación de la cantidad de movimiento) = (Impulso) o

(Masa)·(Variación de la velocidad)=(Fuerza)·(Intervalo de tiempo)

0

$$\Delta(mv)=m\Delta v=Ft$$

Esta relación se obtiene de la 2ª ley de Newton.

Cuestiones sencillas

Lanzamos un huevo a una hoja de papel o a una pared con la misma velocidad.

¿Cuál tiene:

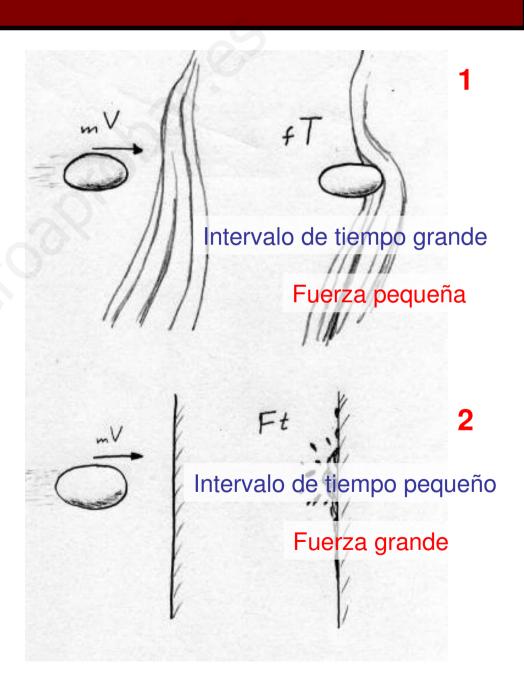
Mayor variación de la velocidad?

El 2, puesto que F es mayor (y pasa de tener V a pararse)

Mayor variación de la cantidad de movimiento?

Lo mismo, la variación en V es mayor en 2

Mayor impulso sobre el huevo?

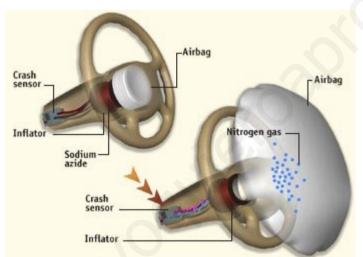

El 2, puesto que el $I=\Delta(mv)$

Mayor tiempo de impacto?

El 1

Mayor fuerza sobre el huevo?

El 2



Seguridad en coches

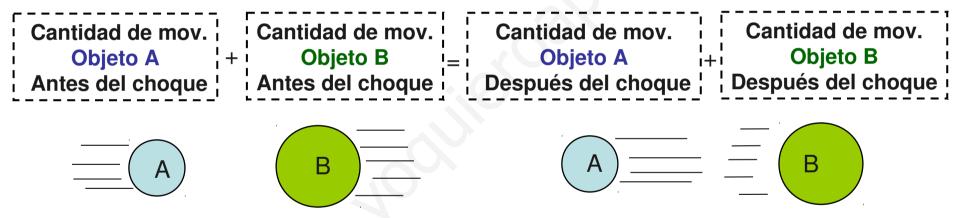
Maximizando el tiempo de impacto sobre el conductor se minimiza la fuerza de impacto. Este principio se usa en el diseño de:

Cinturones de seguridad

Air Bags

Deformación de la carrocería o absorción del golpe

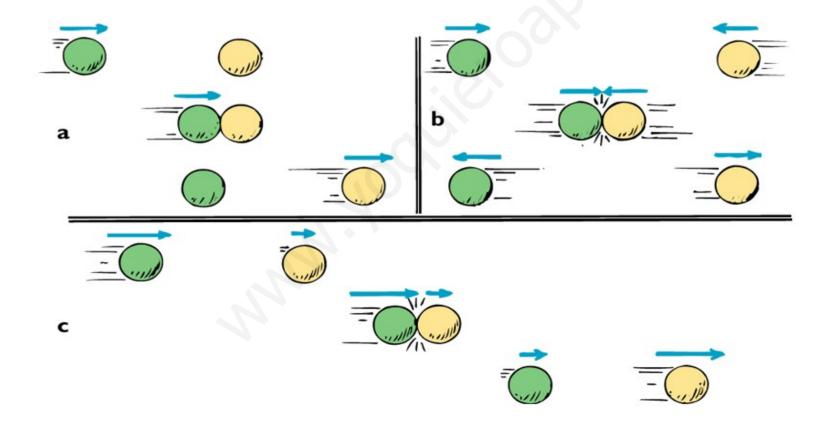
Choques


La cantidad de movimiento neta se conserva en los choques

Cantidad de movimiento neta antes del choque es igual a la cantidad de movimiento después del choque

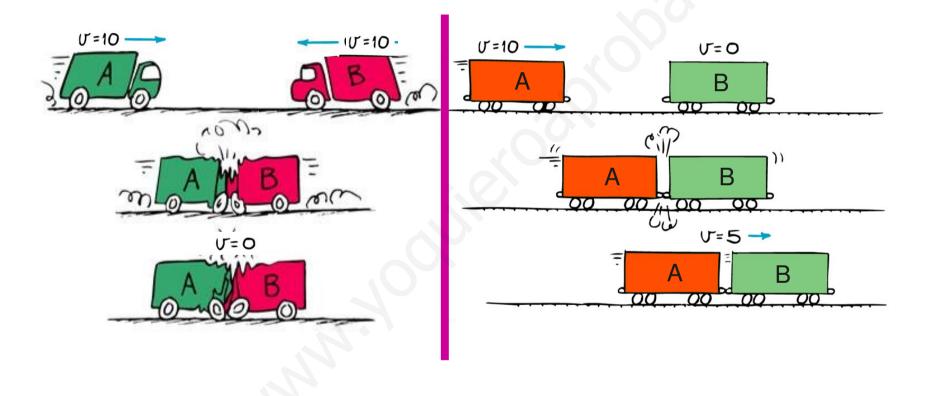
Conservación de la cantidad de movimiento

Como la variación de la cantidad de movimiento en un choque es igual y opuesta, la cantidad de movimiento que gana un objeto es la que pierde el otro.



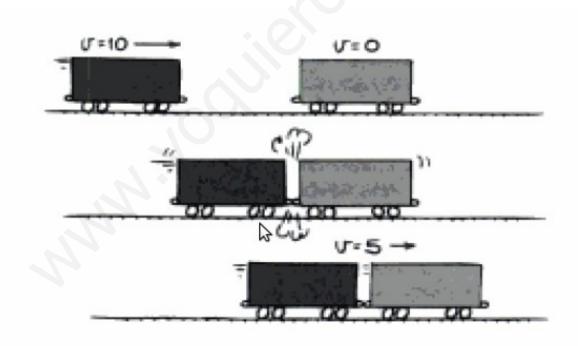
El intercambio en la cantidad de movimiento entre los dos objetos depende de si el choque es o no elástico.

Choques elásticos

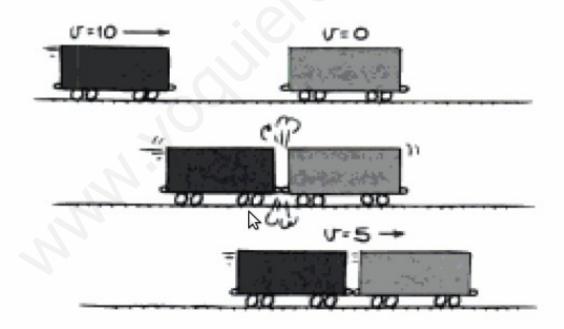

Los objetos con la misma masa intercambian su cantidad de movimiento en choques elásticos.

Por ejemplo, uno de ellos se detiene y el otro avanza con la misma velocidad que tenía el primero (billar)

Choques inelásticos


Los objetos quedan pegados después de chocar.

Choques inelásticos: ejemplo


- (mv)antes=(mv)después
- m·10+m·0=2m·v
- \blacksquare V=5 m/s

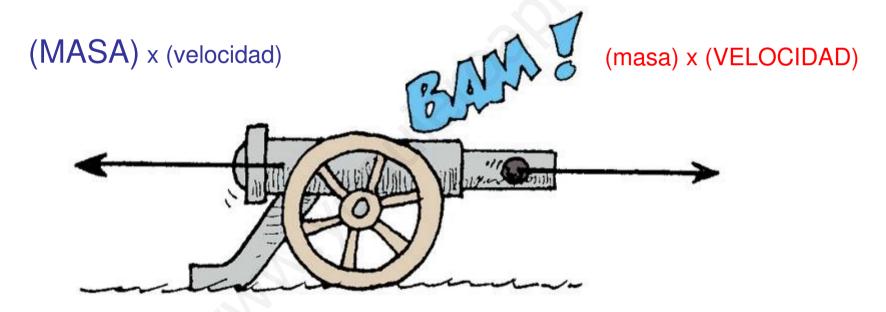
La v final es la misma para los dos cuerpos porque salen juntos

Choques inelásticos: ejemplo

- Lógico, pues después del choque se mueve el doble de masa
- y por lo tanto, la velocidad debe ser la mitad de la que había al principio para que se conserve la cantidad de movimiento

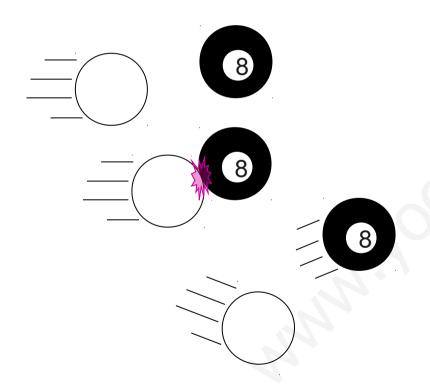
Cuestiones sencillas

Un pez grande (4 kg) nada a 3 m/s junto a un pez chico (2 kg) y se lo traga como desayuno.


¿Cuál es el la cantidad de movimiento total antes del desayuno?

¿Y después del desayuno?

¿Y la velocidad del pez grande (con el pez chico dentro)?


Retroceso

La conservación de la cantidad de movimiento también explica el retroceso de un cañón al disparar

Choques complicados

Los choques en ángulo (no de frente) son más complicados.

No los veremos

Resumen de fórmulas

- Cantidad de movimiento: p=m·v
- Impulso: $I=F \cdot t = \Delta(mv)$
- Conservación de la cantidad:

$$P_{antes_del_choque} = P_{despues_del_choque}$$

Es decir,

$$(mv)_{antes_del_choque} = (mv)_{despues_del_choque}$$

Vídeo

- El universo mecánico: Capítulo 15. Conservación del momento
- Parte 1

http://www.youtube.com/watch?v=Y4IcTWTSdF4&p=D52B7D0336A016D8

■ Parte 2

http://www.youtube.com/watch?v=sIT6nozZ7_k&p=D52B7D0336A016D8