FUNCIONES. GEOMETRIA. COMPLEJOS.

- 1. Halla, razonadamente, el dominio de la función f_1 definida por $f_1(x) = \sqrt{\frac{x^2 16}{x^3 1}}$. (1'5 puntos).
- 2. Halla, razonadamente y con el mínimo número de cálculos posible, el recorrido de la función f_2 definida por $f_2(x) = -x^2 4x + 96$. (1'5 puntos).
- 3. Si g y h son funciones recíprocas entre sí (inversas respecto a la composición), ¿cuál es la función compuesta $g \circ h$? (0'5 puntos). Si $h(x) = \frac{x+2}{2x-3}$ halla, razonadamente, la expresión de g(x). (1'5 puntos).
- 4. Sea f_3 la función definida por $f_3(x) = \begin{cases} \frac{x^2 + x 2}{x^2 4} & \text{si } x < 0 \\ \frac{x^2 4}{x^2 + x 2} & \text{si } x > 0 \end{cases}$ Halla los límites de $f_3(x)$ en los puntos

en los que f_3 no está definida. (3 puntos)

5. Halla, razonadamente el área del triángulo que tiene por vértices a los puntos A(1,-2), B(0,3) y C(-3,2) estando sus coordenadas en centímetros. (2 puntos).

VOLUNTARIO:

Una de las raíces cúbicas de Z es $z_1 = -3 + 4i$; halla razonadamente el módulo y el argumento de las tres raíces cúbicas de Z. (2 puntos).

1.
$$f_1(x) = \sqrt{\frac{x^2 - 16}{x^3 - 1}}$$
 $Dom(f_1) = \{x \in \Re \mid f_1(x) \in \Re\} = \{x \in \Re \mid \frac{x^2 - 16}{x^3 - 1} \ge 0\}$

Resolvemos la inecuación $\frac{x^2-16}{x^3-1} \ge 0$ hallando los valores que anulan al numerador y al denominador y analizando el signo que tendrá el valor numérico de la fracción en cada uno de los intervalos en que aquellos valores dividen al conjunto de los números reales:

Valores de x que anulan el numerador: $x^2 - 16 = 0$ \Rightarrow $x = \pm 4$

Valores de x que anulan el denominador: $x^3 - 1 = 0$ \Rightarrow $(x-1)(x^2 + x + 1) = 0$ \Rightarrow x = 1

Valor de x	(-∞, -4)	-4	(-4,1)	1	(1, 4)	4	(4,+∞)
$x^2 - 16$	+ - -	$\frac{0}{-65}$		$\frac{-15}{0}$	_ +	$\frac{0}{63}$	++++
$\frac{x^{2}-10}{x^{3}-1}$	< 0	= 0	> 0	No existe	< 0	= 0	> 0

El dominio de f_1 , es decir, el conjunto de valores de x para los que $f_1(x) \in \Re$ es:

Dom
$$(f_1) = [-4, 1) \cup [4, +\infty)$$

2. El recorrido de una función es el conjunto de valores que toman las imágenes, en este caso, $f_2(x)$.

 $f_2(x)=-x^2-4x+96$ \Rightarrow Se trata de una función cuadrática, cuyas características generales son conocidas. Su gráfica es una parábola y, al ser negativo (-1) el coeficiente de x^2 , tiene las ramas hacia abajo, por lo que $\lim_{x\to\pm\infty}f_2(x)=-\infty$ y, su vértice es el punto más alto (máximo).

El vértice corresponde al punto en que $x = \frac{-B}{2A}$ $\xrightarrow{A=-1 \text{ y } B=-4}$ x=-2 y su imagen, es decir, el valor mayor del recorrido es: $f_2(-2) = -(-2)^2 - 4(-2) + 96 = 100$

El recorrido de f_2 , es decir, el conjunto de valores $f_2(x) \in \Re$ que tienen antiimagen es:

$$Rec(f_2) = (-\infty, 100]$$

3. Si g y h son funciones recíprocas entre sí \Rightarrow la compuesta $g \circ h$ de ambas es, por definición, la función identidad, es decir: $(g \circ h)(x) = x$.

$$h(x) = \frac{x+2}{2x-3} \iff y = \frac{x+2}{2x-3}$$

las funciones recíprocas tienen intercambiadas las variables (por eso al hacer la composición de ambas el resultado es la función identidad)

$$y = \frac{x+2}{2x-3} \xrightarrow{x \leftrightarrow y} x = \frac{y+2}{2y-3}$$
 Despejando y tendremos el valor de $h^{-1}(x)$, es decir, de $g(x)$

$$x = \frac{y+2}{2y-3} \implies 2xy - 3x = y+2 \implies 2xy - y = 3x+2 \implies y(2x-1) = 3x+2 \implies y = \frac{3x+2}{2x-1}$$

$$g(x) = \frac{3x+2}{2x-1}$$

Comprobación de que $(g \circ h)(x) = x$:

$$(g \circ h)(x) = g[h(x)] = g\left(\frac{x+2}{2x-3}\right) = \frac{3\frac{x+2}{2x-3} + 2}{2\frac{x+2}{2x-3} - 1} = \frac{\frac{3x+6}{2x-3} + \frac{4x-6}{2x-3}}{\frac{2x+4}{2x-3} - \frac{2x-3}{2x-3}} = \frac{\frac{7x}{2x-3}}{\frac{7}{2x-3}} = \frac{7x}{7} = x$$

De igual manera, podemos comprobar que $(h \circ g)(x) = x$:

$$(h \circ g)(x) = h[g(x)] = h\left(\frac{3x+2}{2x-1}\right) = \frac{\frac{3x+2}{2x-1} + 2}{2\frac{3x+2}{2x-1} - 3} = \frac{\frac{3x+2}{2x-1} + \frac{4x-2}{2x-1}}{\frac{6x+4}{2x-1} - \frac{6x-3}{2x-1}} = \frac{\frac{7x}{2x-1}}{\frac{7}{2x-1}} = \frac{7x}{7} = x$$

4.
$$f_3(x) = \begin{cases} \frac{x^2 + x - 2}{x^2 - 4} & \text{si } x < 0 \\ \frac{x^2 - 4}{x^2 + x - 2} & \text{si } x > 0 \end{cases}$$
 Se trata de una función definida a trozos

En el primer intervalo, x < 0 es decir, $\forall x \in (-\infty, 0)$ está definida por $f_3(x) = \frac{x^2 + x - 2}{x^2 + x}$ que, únicamente, no existe en los valores negativos que anulan al denominador:

 $x^2 - 4 = 0$ \Rightarrow $x = \pm 2$ pero al intervalo en que se define por esta expresión sólo pertenece x = -2

$$\lim_{x \to -2} f_3(x) = \lim_{x \to -2} \frac{x^2 + x - 2}{x^2 - 4} = \lim_{x \to -2} \frac{(x+2)(x-1)}{(x+2)(x-2)} = \lim_{x \to -2} \frac{x - 1}{x - 2} = \frac{3}{4}$$

En el segundo intervalo, x > 0 es decir, $\forall x \in (0, +\infty)$ está definida por $f_3(x) = \frac{x^2 - 4}{x^2 + x - 2}$ que, únicamente, no existe en los valores positivos que anulan al denominador:

 $x^2 + x - 4 = 0$ \Rightarrow (x+2)(x-1) = 0 \Rightarrow x = -2 y x = 1 pero al intervalo en que se define por esta expresión sólo pertenece x = 1

$$\lim_{x \to 1} f_3(x) = \lim_{x \to 1} \frac{x^2 - 4}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x+2)(x-2)}{(x+2)(x-1)} = \lim_{x \to 1} \frac{x - 2}{x - 1} \stackrel{-1}{=} \begin{cases} + \infty \, cuando \, x \to 1^- \\ - \infty \, cuando \, x \to 1^+ \end{cases}$$

Como no coinciden los límites laterales, en x = 1 no tiene límite

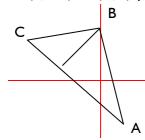
Por último, la función tampoco está definida en x = 0, frontera de los dos intervalos

$$\lim_{x \to 0^{-}} f_{3}(x) = \lim_{x \to 0^{-}} \frac{x^{2} + x - 2}{x^{2} - 4} = \frac{1}{2}$$

$$\lim_{x \to 0^{+}} f_{3}(x) = \lim_{x \to 0^{+}} \frac{x^{2} - 4}{x^{2} + x - 2} = 2$$
Al no coincidir los límites laterales, en $x = 0$ tampoco tiene límite

Los valores de x para los que no está definida f_3 son: x=-2, x=1 y x=0 El límite en x=-2 es: $\lim_{x\to -2} f_3(x)=\frac{3}{4}$ y en los otros dos puntos no tiene límite por no coincidir los valores de límites laterales en ellos.

5. A(1,-2), B(0,3) y C(-3,2)



$$Area = \frac{Base \cdot Altura}{2}$$

Si tomamos como $\mathit{Base} = \mathsf{CA}$, entonces $\mathit{Altura} = \mathsf{distancia}$ entre B y el lado CA.

$$\overrightarrow{CA} = (1 - (-3), -2 - 2) = (4, -4) \Rightarrow Base = |\overrightarrow{CA}| = \sqrt{4^2 + (-4)^2} = 4\sqrt{2} \text{ cm}$$

Para calcular la Altura= distancia entre B y el lado CA. Hallaremos primero la ecuación de la recta, r, que contiene a la base:

Vector director de r es, por ejemplo: $\vec{v} = \frac{1}{4} \overrightarrow{CA} = (1,-1)$ y un punto de r es A(1,-2) por lo que la ecuación

de r es: $\frac{x-1}{1} = \frac{y+2}{-1}$ que en forma general queda x+y+1=0.

$$\begin{cases} r \equiv (x+y+1=0) \\ B(0,3) \end{cases} \Rightarrow Altura = d(B,r) = \frac{|0+3+1|}{\sqrt{1^2+1^2}} = \frac{4}{\sqrt{2}}$$

$$Area = \frac{Base \cdot Altura}{2} = \frac{4\sqrt{2}cm \cdot \frac{4}{\sqrt{2}}cm}{2} = \boxed{8 cm^2}$$

VOLUNTARIO:

Sea
$$Z = R_{\alpha} \implies \sqrt[3]{Z} = \sqrt[3]{R_{\alpha}} = \begin{cases} M\acute{o}dulo: & r = \sqrt[3]{R} \\ Argum.: & \beta = \frac{\alpha + 360^{\circ}k}{3} = \frac{\alpha}{3} + 120^{\circ}k \end{cases}$$
 Dando valores consecutivos a

k obtenemos los argumentos de las tres raíces cúbicas que se diferencian entre sí en 120° . Si tenemos una, podemos hallar las otras dos, sin más que sumar o restar 120° a su argumento. El módulo es el mismo para todas.

 $z_1 = -3 + 4i$ el afijo de z_1 está en el segundo cuadrante por tener la componente real negativa (-3) y la imaginaria positiva (4):

$$z_{1} = -3 + 4i = \begin{cases} M \acute{o} dulo : & r = \sqrt{3^{2} + 4^{2}} = 5 \\ Argum. : & Arctg - \frac{4}{3} = -53'13^{\circ} + 180^{\circ} = 126'87^{\circ} \end{cases}$$
 126'87°
$$\begin{cases} -\frac{-120^{\circ}}{3} + 6'87^{\circ} \\ -\frac{120^{\circ}}{3} + 246'87^{\circ} \end{cases}$$

El módulo de las tres raíces cúbicas de Z es r=5 y sus argumentos: $6'87^{\circ}$, $126'87^{\circ}$ y $246'87^{\circ}$, respectivamente.