Alumno/a: _____

1. Estudia la posición relativa de los siguientes pares de rectas:

a)
$$r: 4x-12y+9=0$$

 $s: 12x+8y-39=0$
b) $r: 2x-5y+8=0$
 $s: y-6=\frac{2}{5}(x-5)$
c) $r: \begin{cases} x=-1-6\lambda \\ y=4+3\lambda \end{cases}$
 $s: \begin{cases} x=3+4\mu \\ y=2-2\mu \end{cases}$

Si son paralelas, determina la distancia entre ellas y, si son secantes, determina su punto de intersección y el ángulo que forman.

- 2. Determina el punto simétrico del punto A(2, 5) respecto a la recta r: 4x-16y+21=0.
- 3. Dado el triángulo de vértices A(3,-1), B(5,3) y C(1,4), se pide:
 - a) Halla la ecuación de la paralela al lado \overline{AB} por el vértice C.
 - b) Ecuaciones de la mediana, altura y mediatriz del lado AB.
 - c) Calcula su área.
- 4. a) Dados los complejos $z_1 = 2 + i$ y $z_2 = 4 3i$ calcula $\overline{z}_1 \frac{z_1}{z_2}$.
 - b) Expresa en forma polar el complejo $z = -4\sqrt{3} + 4i$, calcula en forma polar z^4 y expresa el resultado en forma binómica.
 - c) Halla todas las soluciones de la ecuación $x^3 = -4\sqrt{3} + 4i$
- 5. Resuelve la ecuación:

$$x^4 - 3x^3 + 10x^2 - 6x - 20 = 0$$

MATEMÁTICAS I

Actividades de refuerzo – 3 Curso 2011-2012

Soluciones

1. a) r y s son secantes.

Punto de intersección: $I\left(\frac{9}{4}, \frac{3}{2}\right)$

Ángulo que forman: $\alpha = 74^{\circ} 44' 41,57"$

b) r y s son paralelas

Distancia entre ellas: $\frac{12}{\sqrt{29}}$

c) r y s son coincidentes

$$2. \quad A'\left(\frac{7}{2}, -1\right)$$

3. a) Paralela al lado \overline{AB} 2x - y + 2 = 0

b) Mediana x + y - 5 = 0

Altura x + 2y - 9 = 0

Mediatriz x + 2y - 6 = 0

c) Área 9 u²

4. a) $\frac{9}{5} - \frac{7}{5}i$

b) $z = 8_{150^{\circ}}$ $z^4 = 4096_{240^{\circ}}$ $z^4 = -2048 - 2048\sqrt{3} i$

c) $x_1 = 2_{50^{\circ}}$ $x_2 = 2_{170^{\circ}}$ $x_3 = 2_{290^{\circ}}$

5. -1, 2, 1+3i y 1-3i.