Ejemplos de distribuciones bidimensionales

Ejemplo 1

Una compañía de seguros considera que el número de vehículos (y) que circulan por una determinada autopista a más de 120 km/h , puede ponerse en función del número de accidentes (x) que ocurren en ella. Durante 5 días obtuvo los siguientes resultados:

Accidentes xi	5	7	2	1	9
Número de vehículos yi	15	18	10	8	20

- Calcula el coeficiente de correlación lineal.
- Si ayer se produjeron 6 accidentes, ¿cuántos vehículos podemos suponer que circulaban por la autopista a más de 120 km/h?
- ¿Es buena la predicción?

Construimos una tabla, teniendo en cuenta que la frecuencia absoluta es uno. Debemos conocer la media aritmética de las dos variables, las varianzas, las desviaciones típicas y la covarianza.

		Media ar	ritmética	Var	ianza	Covarianza
	fi	xi yi		\mathbf{vi} \mathbf{xi}^2 \mathbf{yi}^2		xi . yi
	1	5	15	25	225	75
	1	7	18	49	324	126
	1	2	10	4	100	20
	1	1	8	1	64	8
	1	9	20	81	400	180
Σ	5	24	71	160	1113	409

Medias aritméticas

$$\bar{x} = \frac{\sum x_i}{N} = \frac{24}{5} = 4.8$$
 $\bar{x} = 4.8$

$$\bar{x} = \frac{\sum x_i}{N} = \frac{24}{5} = 4.8$$
 $\bar{x} = 4.8$ $\bar{y} = \frac{\sum y_i}{N} = \frac{71}{5} = 14.2$ $\bar{y} = 14.2$

Varianzas y desviaciones típicas

$$\sigma_{x}^{2} = \frac{\sum (x_{i})^{2}}{N} - (\bar{x})^{2} = \frac{160}{5} - (4.8)^{2} = 8.96$$
 $\sigma_{x} = \sqrt{8.96} = 2.993$

$$\sigma_y^2 = \frac{\Sigma (y_i)^2}{N} - (\bar{y})^2 = \frac{1113}{5} - (14.2)^2 = 20.96$$
 $\sigma_y = \sqrt{20.96} = 4.578$

Covarianza
$$\sigma_{xy} \Rightarrow \sigma_{xy} = \frac{\sum xi \cdot yi}{N} - \overline{x} \cdot \overline{y} = \frac{409}{5} - (4.8 \cdot 14.2) = 13.64$$

a) Correlación lineal de Pearson
$$r \Rightarrow r = \frac{\sigma_{xy}}{\sigma_x \times \sigma_y} = \frac{13,64}{2,993 \cdot 4,578} = 0,995 \Rightarrow r = 0,995$$

Comentarios:

La covarianza es positiva, correlación directa. Al aumentar la velocidad aumentará el número de accidentes.

El valor de r está muy próximo a 1, la estimación realizada estará muy cerca del valor real. Dependencia funcional fuerte.

b) Recta de regresión de y sobre
$$\times \Rightarrow y = \overline{y} + \frac{\sigma_{xy}}{\sigma_x^2} (x - \overline{x})$$

$$y = 14.2 + \frac{13.64}{8.96} (x - 4.8) \Rightarrow y = 14.2 + 1.52 (x - 4.8) \Rightarrow y = 1.52 x + 6.9$$

Para \times = 6 accidentes el número de vehículos estimado es: $y = 1,52 \cdot 6 + 6,9 = 16$ Podemos suponer que aver circulaban 16 vehículos la más de 120 km/h

c) La predicción hecha es buena, el coeficiente de correlación está muy próximo a uno.

Ejemplo 2

Las calificaciones de 40 alumnos en psicología evolutiva y en estadística han sido las de la tabla adjunta.

Psicología xi	3	4	5	6	6	7	7	8	10
Estadística yi	2	5	5	6	7	6	7	9	10
Nº de alumnos fi	4	6	12	4	5	4	2	1	2

- a) Obtener la ecuación de la recta de regresión de calificaciones de estadística respecto de las calificaciones de psicología.
- b) ¿Cuál será la nota esperada en estadística para un alumno que obtuvo un 4,5 en psicología?

				Me aritm		Vari	anza	Covarianza	
	xi	yi	fi	fi . xi	fi . yi	fi.xi ²	fi . yi ²	fi . xi . yi	
	3	2	4	12	8	36	16	24	
	4	5	6	24	30	96	150	120	
	5	5	12	60	60	300	300	300	
	6	6	4	24	24	144	144	144	
	6	7	5	30	35	180	245	210	
	7	6	4	28	24	196	144	168	
	7	7	2	14	14	98	98	98	
	8	9	1	8	9	64	81	72	
	9	10	2	20	20	200	200	200	
Σ			40	220	224	1314	1378	1336	

Medias aritméticas

$$\bar{x} = \frac{\sum x_i \cdot fi}{N} = \frac{220}{40} = 55$$
 $\bar{x} = 5.5$ $\bar{y} = \frac{\sum y_i \cdot fi}{N} = \frac{224}{40} = 5.6$ $\bar{y} = 5.6$

Varianzas y desviaciones típicas

$$\sigma_{x}^{2} = \frac{\sum fi \cdot (x_{i})^{2}}{N} - (\overline{x})^{2} = \frac{1314}{40} - (5.5)^{2} = 2.60$$

$$\sigma_{x} = \sqrt{2.6} = 1.61$$

$$\sigma_{y}^{2} = \frac{\sum fi \cdot (y_{i})^{2}}{N} - (\overline{y})^{2} = \frac{1378}{40} - (5.6)^{2} = 3.09$$

$$\sigma_{y} = \sqrt{3.09} = 1.76$$

Covarianza
$$\sigma_{xy} \Rightarrow \sigma_{xy} = \frac{\sum fi \cdot xi \cdot yi}{N} - \overline{x} \cdot \overline{y} = \frac{1336}{40} - (5.5 \cdot 5.6) = 2.6$$

Correlación lineal de Pearson
$$r \Rightarrow r = \frac{\sigma_{xy}}{\sigma_x \times \sigma_y} = \frac{2.6}{1.61 \cdot 1.76} = 0.92 \Rightarrow r = 0.92$$

La covarianza es positiva, correlación positiva fuerte.

El valor de r está muy próximo a 1, la estimación realizada estará muy cerca del valor real.

a) Recta de regresión de y sobre
$$\times \Rightarrow y = \overline{y} + \frac{\sigma_{xy}}{\sigma_x^2} (x - \overline{x})$$

 $y = 5.6 + \frac{2.6}{2.6} (x - 5.5) \Rightarrow y = 5.6 + 1(x - 5.5) \Rightarrow y = x + 0.1$

b) Nota esperada en estadística habiendo obtenido un 4,5 en psicología. y = 4.5 + 0.1 = 4.6

Ejemplo 3

Las notas obtenidas por 10 alumnos en Matemáticas y en Música son:

Matemáticas	6	4	8	5	3,5	7	5	10	5	4
Música	6,5	4,5	7	5	4	8	7	10	6	5

- Calcula la covarianza y el coeficiente de correlación.
- ¿Existe correlación entre las dos variables?
- ¿Cuál será la nota esperada en Música para un alumno que hubiese obtenido un 8,3 en Matemáticas?

Solución:

- a) Covarianza = 3,075. Coeficiente de correlación r = 0,92.
- b) Existe una correlación positiva fuerte.
- c) Recta de regresión: y = 1.6 + 0.817 x La nota esperada en Música = 8, 38

Ejemplo 4

Cinco niñas de 2, 3, 5, 7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 Kg . Halla

Ecuación de la recta de regresión: x = 0.192 y - 0.76

Peso aproximado de una niña de 6 años: 35,2 kg

EJEMPLO 5 la ecuación de la recta de regresión de la edad sobre el peso. ¿Cuál sería el peso aproximado de una niña de 6 años?

Solución:

Una asociación dedicada a la protección de la infancia decide estudiar la relación entre la mortalidad infantil en cada país y el número de camas de hospitales por cada mil habitantes.. Datos

X	50	100	70	60	120	180	200	250	30	90
y	5	2	2,5	3,75	4	1	1,25	0,75	7	3

Donde \mathbf{x} es el nº de camas por mil habitantes e \mathbf{y} el tanto por ciento de mortalidad.

Se pide calcular las rectas de regresión y el coeficiente de correlación lineal.

¿ Si se dispusiese de 175 camas por mil habitantes que tanto por ciento de mortalidad cabria esperar?. ¿La estimación es fiable? Razona la respuesta.

Solución:

Para facilitar los cálculos de los parámetros se utiliza la siguiente tabla:

	$\mathbf{x_i}$	$\mathbf{y_i}$	x_i^2	$\mathbf{y_i}^2$	$\mathbf{x}_{i} \mathbf{y}_{i}$
	50	5	2500	25	250
	100	2	10000	4	200
	70	2,5	4900	6,25	170
	60	3,75	3600	14,0625	225
	120	4	14400	16	480
	180	1	32400	1	180
	200	1,25	40000	1,5625	250
	250	0,75	62500	0,5625	187,5
	30	7	900	49	210
	90	3	8100	9	270
å=	1150	30,25	179300	126,4375	2422,5

$$\mathbf{x} = 115; \quad \mathbf{y} = 3,025\%; \quad \mathbf{S}_{x} = \sqrt{17930 - 13225} = 68,59; \quad \mathbf{S}_{y} = \sqrt{12,64375 - 9,150625} = 1,87 ; \quad \mathbf{S}_{xy} = 242,25 - (115)(3,025) = -105,625$$

Las rectas de regresión serán por tanto:

$$y - 3,025 = -0,022449 (x - 115)$$

$$x - 115 = -30,2053 (y - 3,025)$$

El coeficiente de correlación lineal:

$$r = \frac{-105,625}{(68,59)(1,87)} = -0,8235$$

es una correlación inversa alta.

Para la estimación que nos piden utilizaremos la recta de regresión de Y sobre X.

y=3,025 - 0,022449(175-115)=1,6783 que sería fiable por ser alto el coeficiente de correlación.

EJEMPLO 6

Dada la distribución bidimensional:

Encuentra el valor del coeficiente de correlación lineal usando una tabla de correlación.

Solución

Se usa la siguiente tabla de doble entrada que facilita los cálculos:

X	1	2	3	n' _j	n _j 'y _j	n' _j y _j ²	$n_{ij}x_iy_j$
2	1			1	2	4	2
3	2	2		4	12	36	18
4		1		1	4	16	8
5		2	2	4	20	100	50
n_i	3	5	2	10	å=38	å=156	å=78
$n_i x_i$	3	10	6	å=19	·		
$n_i x_i^2$	3	20	18	å=41			
$n_{ij}x_iy_j$	7	40	30	å=78			

De aquí se tiene:

$$\mathbf{x} = 19/10 = 1.9$$
; $\mathbf{y} = 38/10 = 3.8$; $S_x^2 = 4.1 - (1.9)^2 = 0.49$, $S_x = 0.7$; $S_y^2 = 15.6 - (3.8)^2 = 1.16$,

$$S_y = 1,077; S_{xy} = 7,8 - (1,9)(3,8) = 0,58.$$

Luego
$$\mathbf{r} = \frac{0.58}{(0.7)(1.077)} = 0.769$$

EJEMPLO 7

En la tabla siguiente se dan los valores y algunas frecuencias absolutas de un par de variables tratadas conjuntamente. Los valores de la primera fila corresponden a la variable Y, y los de la primera columna a la variable X. La última columna es la marginal de X y la última fila es la marginal de Y.

	1	2	4	7	9	11	
1	1	2		1	0	0	5
3	0			1	1	0	4
4	1	0	2	1	1	3	
5	1	1	3	2	4	0	
6		1	1		1	0	4
7	0	0	0	1	3	1	
	4	5	8	6	10	4	

- a) Completar la tabla.
- b) Calcular el coeficiente de correlación y las rectas de regresión.
- c) ¿Sirven las rectas de regresión para hacer predicciones de una variable en función de la otra? ¿Por qué?

Solución

x y	1	2	4	7	9	11	
1	1	2	1	1	0	0	5
3	0	1	1	1	1	0	4
4	1	0	2	1	1	3	8
5	1	1	3	2	4	0	11
6	1	1	1	0	1	0	4
7	0	0	0	1	3	1	5
	4	5	8	6	10	4	37

b)
$$\mathbf{x} = \frac{1.5 + 3.4 + 4.8 + 5.11 + 6.4 + 7.5}{37} = 4,405$$
; $\mathbf{y} = \frac{1.4 + 2.5 + 4.8 + 7.6 + 9.10 + 11.4}{37} = 6$

$$\mathbf{M}_{xy}^{[3]} = \frac{\sum_{ij} x_{ij} y_{j} n_{ij}}{N} = 28,378, \text{ luego } \mathbf{S}_{xy} = \mathbf{M}_{xy} - \mathbf{x.y} = 1,948$$

$${S_x}^2 = \frac{1.5 + 3^2.4 + 4^2.8 + 5^2.11 + 6^2.4 + 7^2.5}{37} - (4,405)^2 = 3,11$$
; $S_x = 1,764$

$$S_y^2 = 47,027 - 36 = 11,027; S_y = 3,321$$

El coeficiente de correlación lineal $\mathbf{r} = \frac{(1,764)(3,321)}{(1,764)(3,321)} = 0,3325 < 0,40,$ correlación baja.

 $m_{yx} = 1,948/3,11 = 0,626$ y $m_{xy} = 1,948/11,027 = 0,177$ son los coeficientes de regresión.

Las rectas de regresión son:

y - 6 = 0,626 (\mathbf{x} - 4,405) de Y sobre X, y x - 4,405 = 0,177(\mathbf{y} - 6) de X sobre y

c) Las rectas de regresión no sirven para hacer predicciones, **fiables**, de una variable respecto de la otra ya que la correlación es baja. (*El módulo del coeficiente de correlación lineal está muy alejado de la unidad*)