

EXAM 3_1

1. Reduce the powers, using properties:

a)
$$\left(\frac{2}{3}\right)^{-3} \cdot \frac{2^3 \cdot 3^4}{9^2 \cdot 4^3} =$$
 b) $\frac{a^{-2} \cdot (ab^3)^2 \cdot (a^2)^5}{a^7 \cdot b^{-3} \cdot (ab)^2} =$

- 2. Work out and simplify:
- b) $\left(\frac{1}{2}-1\right)\cdot\frac{6}{5}+\frac{3}{2}\cdot\left(\frac{2}{5}-\frac{1}{2}\right)=$ a) $\frac{4}{9} \cdot \frac{3}{2} - \frac{9}{2} \cdot \left(\frac{1}{3} - \frac{1}{2}\right) =$
- 3. Solve graphically and by elimination or substitution:
- x + 2y = 4b) $\frac{x}{2} + y = 1$ a) $\begin{array}{c} x+2y=4 \\ x-y=1 \end{array}$
- 4. Work out the equations of the following lines:
 - a) The line joining these points: A(-1,1) and B(2,3).
 - b) The line passes through (1,-2) and cuts the x-axis in -3
 - c) The line passes through (-2,1) and a slope of 4.
- 5. Write the equations of the following lines and give each of their slopes and yintercepts. (2 points)

Maths 3rd ESO

(2 points)

(2 points)

(2.5 points)

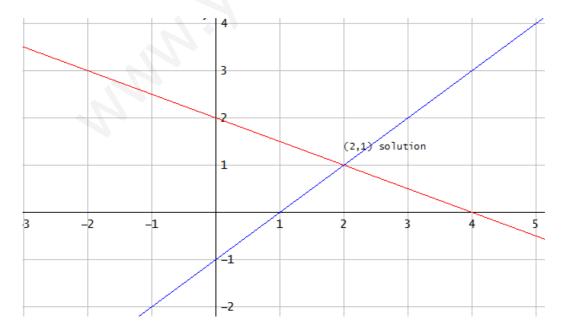
(1.5 points)

SOLUTION

2. Reduce the powers, using properties:

a)
$$\left(\frac{2}{3}\right)^{-3} \cdot \frac{2^3 \cdot 3^4}{9^2 \cdot 4^3} = \frac{2^{-3}}{3^{-3}} \cdot \frac{2^3 \cdot 3^4}{(3^2)^2 \cdot (2^2)^3} = \frac{2^{-3} \cdot 2^3 \cdot 3^4}{3^{-3} \cdot 3^4 \cdot 2^6} = \frac{3^4}{3 \cdot 2^6} = \frac{3^3}{2^6}$$

b) $\frac{a^{-2} \cdot (ab^3)^2 \cdot (a^2)^5}{a^7 \cdot b^{-3} \cdot (ab)^2} = \frac{a^{-2} \cdot a^2 \cdot b^6 \cdot a^{10}}{a^7 \cdot b^{-3} \cdot a^2 \cdot b^2} = \frac{b^6 \cdot a^{10}}{a^9 \cdot b^{-1}} = a \cdot b^7$

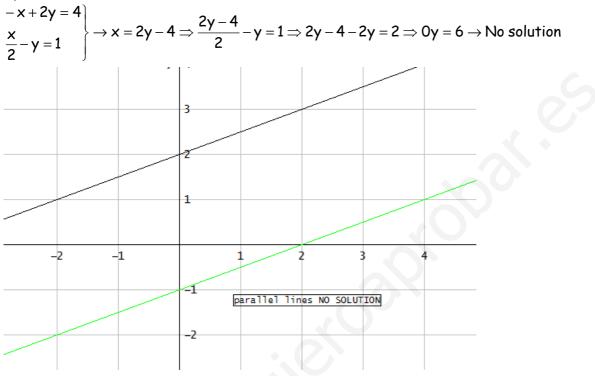

2. Work out and simplify:

a)
$$\frac{4}{9} \cdot \frac{3}{2} - \frac{9}{2} \cdot \left(\frac{1}{3} - \frac{1}{2}\right) = \frac{4 \cdot 3}{9 \cdot 2} - \frac{9}{2} \cdot \frac{2 - 3}{6} = \frac{2}{3} - \frac{9}{2} \cdot \frac{-1}{6} = \frac{2}{3} + \frac{3}{4} = \frac{8 + 9}{12} = \frac{17}{12}$$

- $b)\left(\frac{1}{2}-1\right)\cdot\frac{6}{5}+\frac{3}{2}\cdot\left(\frac{2}{5}-\frac{1}{2}\right)=\frac{1-2}{2}\cdot\frac{6}{5}+\frac{3}{2}\cdot\frac{4-5}{10}=-\frac{6}{10}-\frac{3}{20}=-\frac{12-3}{20}=-\frac{15}{20}=-\frac{3}{4}$
- 3. Solve graphically and by elimination or substitution:
- a) By elimination:

$$\begin{array}{c} x+2y=4\\ x-y=1 \end{array} \right\} \xrightarrow{x+2y=4} -x+y=-1 \end{array} \Rightarrow 3y=3 \Rightarrow y=1 \Rightarrow x-1=1 \Rightarrow x=2 \rightarrow Solution(2,1)$$

 $\begin{array}{ll} \text{Graphically:} & x+2y=4\\ & x-y=1 \end{array} \end{array} \rightarrow \begin{cases} y=-\frac{x}{2}+2 \rightarrow slope -\frac{1}{2}; y \text{-intercepts 2}\\ & y=x-1 \rightarrow slope 1; y \text{-intercepts -1} \end{cases}$



Maths 3rd ESO

b)
$$\begin{vmatrix} -x+2y = 4 \\ \frac{x}{2} - y = 1 \end{vmatrix}$$
 \rightarrow $\begin{cases} y = \frac{x}{2} + 2 \rightarrow \text{slope} \frac{1}{2}; y - \text{intercepts } 2 \\ y = \frac{x}{2} - 1 \rightarrow \text{slope} \frac{1}{2}; y - \text{intercepts } -1 \end{cases}$ parallel lines

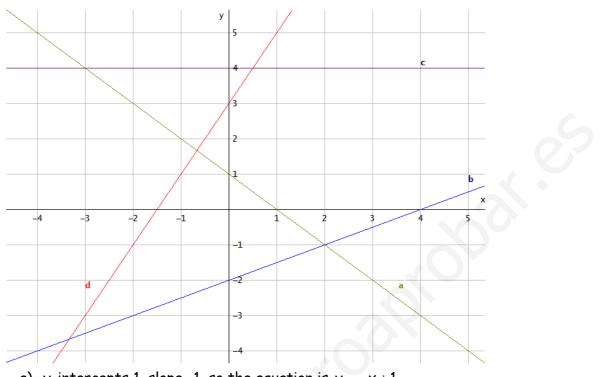
By substitution:

- 4. Work out the equations of the following lines:
 - a) The line joining these points: A(-1,1) and B(2,3).

$$m = \frac{3-1}{2+1} = \frac{2}{3} \rightarrow y = y_0 + m(x - x_0) \rightarrow y = 1 + \frac{2}{3}(x+1) \rightarrow y = 1 + \frac{2}{3}x + \frac{2}{3} \rightarrow y = \frac{2}{3}x + \frac{5}{3}$$

b) The line passes through (1,-2) and cuts the x-axis in -3
So, the line passes through points (1,-2) and (-3,0)

$$m = \frac{0+2}{-3-1} = -\frac{1}{2} \to y = y_0 + m(x - x_0) \to y = 0 - \frac{1}{2}(x+3) \to y = -\frac{1}{2}x - \frac{3}{2}$$


c) The line passes through (-2,1) and a slope of 4.

$$y = y_0 + m(x - x_0) \rightarrow y = 1 + 4(x + 2) \rightarrow y = 1 + 4x + 8 \rightarrow y = 4x + 9$$

Maths 3rd ESO

5. Write the equations of the following lines and give each of their slopes and yintercepts.

- a) y-intercepts 1, slope -1, so the equation is y = -x + 1
- b) y-intercepts -2, slope 1/2, so the equation is $y = \frac{1}{2}x 2$
- c) y-intercepts 3, slope 2, so the equation is y = 2x + 3
- d) horizontal line, so the equation is y = 4