

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS 2023

184-MATEMÁTICAS APLICADAS A LAS CC. SOCIALES

OBSERVACIONES IMPORTANTES: Debes responder a un máximo de 4 preguntas. Cada cuestión tiene una puntuación de 2,5 puntos. Si se responde a más de 4 preguntas, sólo se corregirán las cuatro primeras que haya respondido el estudiante. No se podrán usar calculadoras gráficas ni programables.

CUESTIÓN 1.

Discutir el sistema lineal de ecuaciones en función de los valores del parámetro a:

$$x + y + 2z = 2$$

$$-2x + 3y + z = 1$$

$$-x + ay + 3z = 3$$

Resolverlo para a = 2. (2,5 puntos)

CUESTIÓN 2. Dado el programa lineal:

Max
$$f(x, y) = 3x + y$$

sujeto $a: 2x + y \ge 6$
 $2x + 5y \le 30$
 $2x - y \le 6$
 $x \ge 0$
 $y \ge 0$

- a) Represente gráficamente la región factible y calcule sus vértices. (2 puntos)
- b) Resuelva el programa lineal. (0,5 puntos)

CUESTIÓN 3. (2,5 puntos) Hallar las derivadas de las siguientes funciones:

a)
$$f(x) = \frac{\ln x}{x}$$
. (1,25 puntos)

b)
$$f(x) = xe^{x^2}$$
. (1,25 puntos)

CUESTIÓN 4. Dada la función $f(x) = \frac{2x+2}{x}$ hallar:

- a) El dominio de la función. (0,5 puntos)
- b) Las asíntotas de la función. (0,5 puntos)
- c) Los puntos de corte con los ejes. (0,5 puntos)
- d) Los intervalos de crecimiento y decrecimiento de la función. (1 punto)

CUESTIÓN 5. Sea la función $f(x) = 2e^{-3x}$:

- a) Obtener la ecuación de la recta tangente a la gráfica de la función que pasa por el punto x = 0. (1,25 puntos)
- b) Calcúlese el área de la región limitada por la gráfica f(x), las rectas x = 0 y x = 1 y el eje de abscisas. (1,25 puntos)

CUESTIÓN 6. Hallar las siguientes integrales:

a)
$$\int_{1}^{2} \left(e^{x} - \frac{1}{x} + 4\right) dx$$
. (1,25 puntos)
b) $\int \frac{x^{2} + 1}{x^{3} + 3x} dx$. (1,25 puntos)

b)
$$\int \frac{x^2+1}{x^3+3x} dx$$
. (1,25 puntos)

CUESTIÓN 7. En una clase de 18 alumnos, hay 4 que destacan en matemáticas y otros 6 que destacan en física.

- a) Si se eligen de esa clase 2 alumnos al azar, ¿cuál es la probabilidad de que ambos destaquen en matemáticas? (1,25 puntos)
- b) Si se eligen de esa clase 3 alumnos al azar, ¿cuál es la probabilidad de que ninguno destaque ni en matemáticas ni en física? (1,25 puntos)

CUESTIÓN 8. En un club social el 60% de los socios son hombres. Entre los socios, el 45% de los hombres juegan a las cartas, así como el 55% de las mujeres. Si elegimos un socio al azar:

- a) ¿cuál es la probabilidad de que de que juegue a las cartas? (1,25 puntos)
- b) Sabiendo que juega a las cartas, ¿cuál es la probabilidad de que sea mujer? (1,25 puntos)

SOLUCIONES

CUESTIÓN 1.

Discutir el sistema lineal de ecuaciones en función de los valores del parámetro a:

$$x + y + 2z = 2$$

$$-2x + 3y + z = 1$$

$$-x + ay + 3z = 3$$

Resolverlo para a = 2. (2,5 puntos)

La matriz de coeficientes A asociada al sistema es $A = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 3 & 1 \\ -1 & a & 3 \end{pmatrix}$ y la matriz ampliada es

$$A/B = \begin{pmatrix} 1 & 1 & 2 & 2 \\ -2 & 3 & 1 & 1 \\ -1 & a & 3 & 3 \end{pmatrix}.$$

El determinante de A es $|A| = \begin{vmatrix} 1 & 1 & 2 \\ -2 & 3 & 1 \\ -1 & a & 3 \end{vmatrix} = 9 - 1 - 4a + 6 + 6 - a = -5a + 20.$

Veamos cuando se anula.

$$|A| = 0 \Rightarrow -5a + 20 = 0 \Rightarrow 5a = 20 \Rightarrow \boxed{a = \frac{20}{5} = 4}$$

Analizamos dos situaciones diferentes.

CASO 1. $a \neq 4$

En este caso el determinante de *A* es no nulo y su rango es 3, así como el de la matriz ampliada y el número de incógnitas. El sistema es COMPATIBLE DETERMINADO (tiene una única solución).

CASO 2. a = 4

En este caso el determinante de *A* es nulo y su rango no es 3.

Estudiamos su rango usando el método de Gauss.

$$A/B = \begin{pmatrix} 1 & 1 & 2 & 2 \\ -2 & 3 & 1 & 1 \\ -1 & 4 & 3 & 3 \end{pmatrix} \Rightarrow \begin{cases} Fila 2^{a} + 2 \cdot Fila 1^{a} \\ -2 & 3 & 1 & 1 \\ \frac{2}{0} & 5 & 5 & 5 \end{pmatrix} \rightarrow \text{Nueva Fila } 2^{a} \end{cases}$$

$$\begin{cases}
Fila 3^{a} + Fila 1^{a} \\
-1 & 4 & 3 & 3 \\
\frac{1}{0} & \frac{1}{5} & \frac{2}{5} & \frac{2}{5}
\end{cases}$$
Nueva Fila 3^{a}

$$\Rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 5 & 5 & 5 \\ 0 & 5 & 5 & 5 \end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} Fila \, 3^{a} - Fila \, 2^{a} \\ 0 \quad 5 \quad 5 \quad 5 \\ 0 \quad -5 \quad -5 \quad -5 \\ \hline 0 \quad 0 \quad 0 \quad 0 \quad \rightarrow \text{Nueva Fila } 3^{a} \end{cases} \Rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 5 & 5 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

El rango de A es 2 al igual que el de A/B, pero el número de incógnitas es 3. El sistema es COMPATIBLE INDETERMINADO (tiene infinitas soluciones):

Lo resolvemos para a = 2. Sabemos que es compatible determinado (CASO 1).

$$\begin{vmatrix} x+y+2z=2\\ -2x+3y+z=1\\ -x+2y+3z=3 \end{vmatrix} \Rightarrow \begin{cases} Fila \ 2^{a}+2 \cdot Fila \ 1^{a}\\ -2 & 3 & 1 & 1\\ 2 & 2 & 4 & 4\\ \hline 0 & 5 & 5 & 5 \rightarrow \text{Nueva Fila } 2^{a} \end{cases}$$

$$\begin{cases}
Fila 3^{a} + Fila 1^{a} \\
-1 & 2 & 3 & 3 \\
\frac{1}{0} & 3 & 5 & 5
\end{cases} \Rightarrow Nueva Fila 3^{a}$$

$$\Rightarrow
\begin{pmatrix}
1 & 1 & 2 & 2 \\
0 & 5 & 5 & 5 \\
0 & 3 & 5 & 5
\end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} 5 \cdot Fila \, 3^{a} - 3 \cdot Fila \, 2^{a} \\ 0 \quad 15 \quad 25 \quad 25 \\ 0 \quad -15 \quad -15 \quad -15 \\ \hline 0 \quad 0 \quad 10 \quad 10 \end{cases} \rightarrow \text{Nueva Fila } 3^{a} \end{cases} \Rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 5 & 5 & 5 \\ 0 & 0 & 10 & 10 \end{pmatrix}$$

Resolvemos el sistema equivalente obtenido.

$$\begin{vmatrix}
x+y+2z=2 \\
5y+5z=5 \\
10z=10
\end{vmatrix} \Rightarrow \begin{vmatrix}
x+y+2z=2 \\
y+z=1 \\
z=\frac{10}{10}=1
\end{vmatrix} \Rightarrow \begin{vmatrix}
x+y+2=2 \\
y+1=1 \Rightarrow y=0
\end{vmatrix} \Rightarrow x+0+2=2 \Rightarrow x=0$$

La solución es x = 0; y = 0; z = 1.

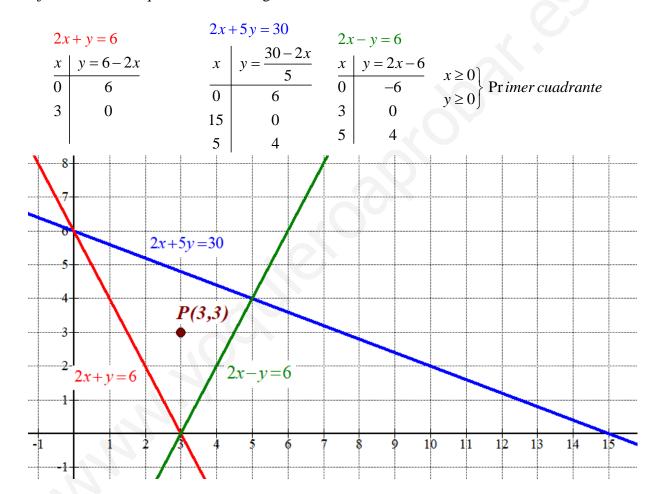
CUESTIÓN 2. Dado el programa lineal:

Max
$$f(x, y) = 3x + y$$

sujeto $a: 2x + y \ge 6$
 $2x + 5y \le 30$
 $2x - y \le 6$
 $x \ge 0$
 $y \ge 0$

- a) Represente gráficamente la región factible y calcule sus vértices. (2 puntos)
- b) Resuelva el programa lineal. (0,5 puntos)

Dibujamos las rectas que delimitan la región factible.



$$2x + y \ge 6$$

$$2x + y \ge 6$$

$$2x + 5y \le 30$$
Los puntos de la región factible cumplen
$$2x - y \le 6$$

$$2x + 5y \le 30$$

$$2x + 5y \le 30$$

$$2x - 6 \le y$$

$$x \ge 0$$

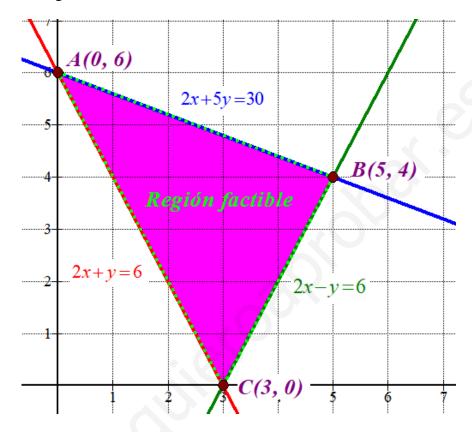
$$y \ge 0$$

Entonces es la región del primer cuadrante que está por debajo de la recta azul y por encima de las rectas **roja** y **verde**.

Compruebo que el punto P(3, 3) perteneciente a dicha región cumple todas las restricciones.

$$\begin{array}{c}
2 \cdot 3 + 3 \ge 6 \\
2 \cdot 3 + 5 \cdot 3 \le 30 \\
2 \cdot 3 - 3 \le 6 \\
3 \ge 0 \\
3 \ge 0
\end{array}$$
 ¡Se cumplen todas!

Coloreo de rosa la región factible.



Determino las coordenadas de los vértices A(0,6), B(5,4) y C(3, 0).

$$A \to \begin{cases} 2x + 5y = 30 \\ 2x + y = 6 \end{cases} \Rightarrow \begin{cases} 2x + 5y = 30 \\ y = 6 - 2x \end{cases} \Rightarrow 2x + 5(6 - 2x) = 30 \Rightarrow 2x + 30 - 10x = 30 \Rightarrow$$

$$\Rightarrow$$
 $-8x = 0 \Rightarrow x = 0 \Rightarrow y = 6 - 2 \cdot 0 = 6 \Rightarrow A(0,6)$

$$B \to \begin{cases} 2x + 5y = 30 \\ 2x - y = 6 \end{cases} \Rightarrow \begin{cases} 2x + 5y = 30 \\ 2x - 6 = y \end{cases} \Rightarrow 2x + 5(2x - 6) = 30 \Rightarrow 2x + 10x - 30 = 30 \Rightarrow$$

$$\Rightarrow 12x = 60 \Rightarrow x = \frac{60}{12} = 5 \Rightarrow y = 2.5 - 6 = 4 \Rightarrow \boxed{B(5,4)}$$

$$C \to \begin{cases} 2x - y = 6 \\ 2x + y = 6 \end{cases} \Rightarrow \begin{cases} 2x - y = 6 \\ y = 6 - 2x \end{cases} \Rightarrow 2x - (6 - 2x) = 6 \Rightarrow 2x - 6 + 2x = 6 \Rightarrow$$

$$\Rightarrow 4x = 12 \Rightarrow x = \frac{12}{4} = 3 \Rightarrow y = 6 - 2 \cdot 3 = 0 \Rightarrow \boxed{C(3,0)}$$

b) Para resolver el programa lineal valoramos la función que se desea maximizar f(x, y) = 3x + y en cada uno de los vértices en busca del máximo valor.

$$A(0, 6) \rightarrow f(x, y) = 3.0 + 6 = 6$$

 $B(5, 4) \rightarrow f(5, 4) = 3.5 + 4 = 19$ [Máximo!
 $C(3, 0) \rightarrow f(3, 0) = 3.3 + 0 = 9$

El máximo valor de la función es 19 y se alcanza en el punto B(5, 4).

CUESTIÓN 3. (2,5 puntos) Hallar las derivadas de las siguientes funciones:

a)
$$f(x) = \frac{\ln x}{x}$$
. (1,25 puntos)

b)
$$f(x) = xe^{x^2}$$
. (1,25 puntos)

a)
$$f'(x) = \frac{\frac{1}{x} \cdot x - 1 \cdot \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

b)
$$f'(x) = 1 \cdot e^{x^2} + xe^{x^2} \cdot 2x = e^{x^2} + 2x^2e^{x^2} = (1 + 2x^2)e^{x^2}$$

CUESTIÓN 4. Dada la función $f(x) = \frac{2x+2}{x}$ hallar:

- a) El dominio de la función. (0,5 puntos)
- b) Las asíntotas de la función. (0,5 puntos)
- c) Los puntos de corte con los ejes. (0,5 puntos)
- d) Los intervalos de crecimiento y decrecimiento de la función. (1 punto)
 - a) El dominio de la función son todos los valores reales menos los que anulan el denominador \rightarrow Dominio = $\mathbb{R} \{0\}$.
 - b) Asíntota vertical. x = a.

 $\dot{x} = 0$ es asíntota vertical?

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2x + 2}{x} = \frac{0 + 2}{0} = \frac{2}{0} = \infty$$

x = 0 es asíntota vertical

Asíntota horizontal. y = b

$$b = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x + 2}{x} = \frac{\infty}{\infty} = \ln \det \operatorname{er} \min \operatorname{ación} = \lim_{x \to \infty} \frac{2x}{x} = 2$$

y = 2 es asíntota horizontal.

Asíntota oblicua. y = mx + n

No existe pues existe asíntota horizontal.

c)

$$x = 0 \Rightarrow f(0) = \frac{2 \cdot 0 + 2}{0} = \cancel{A} \Rightarrow \text{No hay punto de corte con el eje Y}$$

$$y = 0 \Rightarrow 2x + 2 = 0 \Rightarrow 2x + 2 = 0 \Rightarrow 2x = 2 \Rightarrow x = -2 = 1 \Rightarrow R(-1, 0)$$

$$y = 0 \Rightarrow \frac{2x+2}{x} = 0 \Rightarrow 2x+2 = 0 \Rightarrow 2x = -2 \Rightarrow x = \frac{-2}{2} = -1 \Rightarrow P(-1,0)$$

El único punto de corte de la gráfica de la función con los ejes de coordenadas es P(-1,0).

d) Utilizamos la derivada.

$$f'(x) = \frac{2 \cdot x - 1 \cdot (2x + 2)}{x^2} = \frac{2x - 2x - 2}{x^2} = \frac{-2}{x^2}$$

$$f'(x) = 0 \Rightarrow \frac{-2}{x^2} = 0 \Rightarrow -2 = 0 \Rightarrow \text{No existen puntos críticos}$$

Estudiamos el signo de la derivada antes y después de x = 0.

- En $(-\infty,0)$ tomamos x = -I y la derivada vale $f'(-1) = \frac{-2}{(-1)^2} = -2 < 0$. La función decrece en $(-\infty,0)$.
- En $(0,+\infty)$ tomamos x = 1 y la derivada vale $f'(1) = \frac{-2}{1^2} = -2 < 0$. La función decrece en $(0,+\infty)$.

La función decrece en todo su dominio = $\mathbb{R} - \{0\}$.

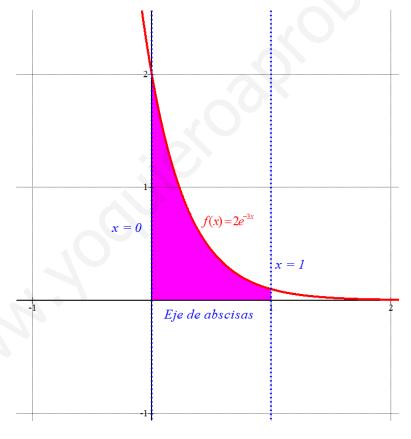
CUESTIÓN 5. Sea la función $f(x) = 2e^{-3x}$:

- a) Obtener la ecuación de la recta tangente a la gráfica de la función que pasa por el punto x = 0. (1,25 puntos)
- b) Calcúlese el área de la región limitada por la gráfica f(x), las rectas x = 0 y x = 1 y el eje de abscisas. (1,25 puntos)
 - a) La recta tangente en x = a tiene ecuación y f(a) = f'(a)(x-a).

$$f'(x) = 2(-3)e^{-3x} = -6e^{-3x}$$

$$\begin{cases}
f(0) = 2e^{-3.0} = 2e^{0} = 2 \\
f'(0) = -6e^{-3.0} = -6 \\
y - f(0) = f'(0)(x - 0)
\end{cases} \Rightarrow y - 2 = (-6)(x - 0) \Rightarrow y - 2 = -6x \Rightarrow y = -6x + 2$$

b) Debemos hallar el área del recinto coloreado de rosa.



Este área tendrá un valor aproximado de entre 0.5 y 1 unidad cuadrada. Hallamos su valor exacto usando el cálculo integral.

$$Area = \int_{0}^{1} f(x)dx = \int_{0}^{1} 2e^{-3x}dx = \left[-\frac{2}{3}e^{-3x} \right]_{0}^{1} = \left[-\frac{2}{3}e^{-3\cdot 1} \right] - \left[-\frac{2}{3}e^{-3\cdot 0} \right] =$$

$$= -\frac{2}{3}e^{-3} + \frac{2}{3}e^{0} = \boxed{\frac{2}{3} - \frac{2}{3e^{3}} \approx 0.6335u^{2}}$$

CUESTIÓN 6. Hallar las siguientes integrales:

a)
$$\int_{1}^{2} \left(e^{x} - \frac{1}{x} + 4\right) dx$$
. (1,25 puntos)

b)
$$\int \frac{x^2 + 1}{x^3 + 3x} dx$$
. (1,25 puntos)

a) Calculamos la integral indefinida.

$$\int \left(e^{x} - \frac{1}{x} + 4\right) dx = \int e^{x} dx - \int \frac{1}{x} dx + \int 4 dx = e^{x} - \ln x + 4x + C$$

Calculamos la integral definida pedida.

$$\int_{1}^{2} \left(e^{x} - \frac{1}{x} + 4 \right) dx = \left[e^{x} - \ln x + 4x \right]_{1}^{2} = \left[e^{2} - \ln 2 + 4 \cdot 2 \right] - \left[e^{1} - \ln 1 + 4 \cdot 1 \right] =$$

$$= e^{2} - \ln 2 + 8 - e - 4 = \left[e^{2} - e - \ln 2 + 4 \right]$$

b)
$$\int \frac{x^2 + 1}{x^3 + 3x} dx = \frac{1}{3} \int \frac{3(x^2 + 1)}{x^3 + 3x} dx = \frac{1}{3} \int \frac{3x^2 + 3}{x^3 + 3x} dx = \left[\frac{1}{3} \ln(x^3 + 3x) + C \right]$$

Otra forma de resolverlo (cambio de variable)

$$\int \frac{x^2 + 1}{x^3 + 3x} dx = \begin{cases} x^3 + 3x = t \\ (3x^2 + 3) dx = dt \\ dx = \frac{dt}{3x^2 + 3} = \frac{dt}{3(x^2 + 1)} \end{cases} = \int \frac{x^2 + 1}{t} \frac{dt}{3(x^2 + 1)} = \frac{1}{3} \int \frac{1}{t} dt = \frac{1}{3} \int \frac$$

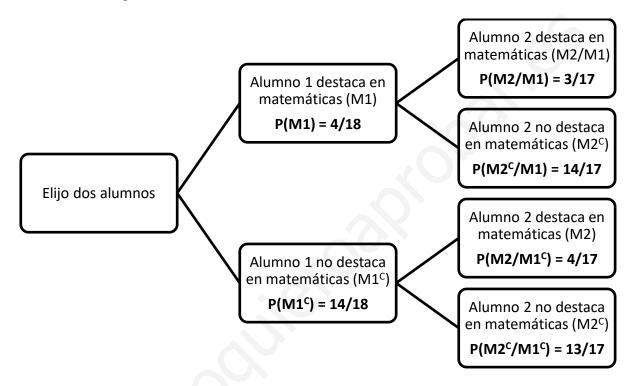
$$= \frac{1}{3} \ln t = \boxed{\frac{1}{3} \ln \left(x^3 + 3x\right) + C}$$

CUESTIÓN 7. En una clase de 18 alumnos, hay 4 que destacan en matemáticas y otros 6 que destacan en física.

- a) Si se eligen de esa clase 2 alumnos al azar, ¿cuál es la probabilidad de que ambos destaquen en matemáticas? (1,25 puntos)
- b) Si se eligen de esa clase 3 alumnos al azar, ¿cuál es la probabilidad de que ninguno destaque ni en matemáticas ni en física? (1,25 puntos)

Llamamos M al suceso "El alumno elegido destaca en matemáticas" y F al suceso "El alumno elegido destaca en física".

a) Realizamos un diagrama de árbol.

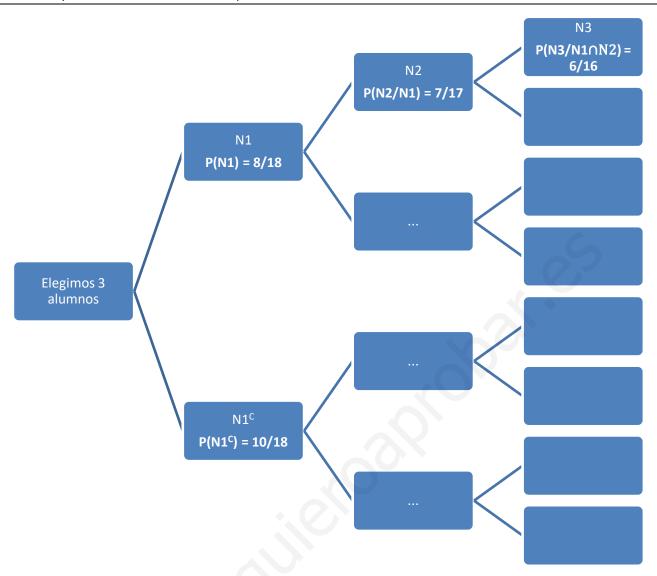


Nos piden calcular la probabilidad de $M1 \cap M2$.

$$P(M1 \cap M2) = P(M1)P(M2/M1) = \frac{4}{18} \cdot \frac{3}{17} = \boxed{\frac{2}{51} \approx 0.039}$$

b) Supongamos que ninguno de los alumnos que destaca en matemáticas destaca en física. En esta situación tendríamos 18-4-6=8 alumnos que ni destacan en matemáticas ni en física.

Llamamos N al suceso "el alumno elegido no destaca ni en matemáticas ni en física". Realizamos un diagrama de árbol.



Nos piden calcular la probabilidad de $N1 \cap N2 \cap N3$.

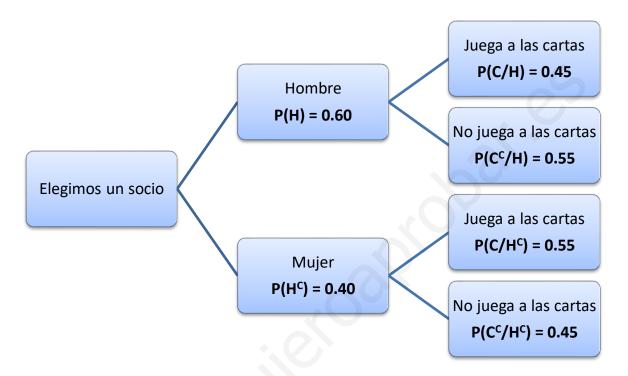
$$P(N1 \cap N2 \cap N3) = P(N1)P(N2/N1)P(N3/(N1 \cap N2)) = \frac{8}{18} \cdot \frac{7}{17} \cdot \frac{6}{16} = \boxed{\frac{7}{102} \approx 0.0686}$$

CUESTIÓN 8. En un club social el 60% de los socios son hombres. Entre los socios, el 45% de los hombres juegan a las cartas, así como el 55% de las mujeres. Si elegimos un socio al azar:

- a) ¿cuál es la probabilidad de que de que juegue a las cartas? (1,25 puntos)
- b) Sabiendo que juega a las cartas, ¿cuál es la probabilidad de que sea mujer? (1,25 puntos)

Llamamos H al suceso "El socio elegido es hombre" y C al suceso "El socio elegido juega a las cartas".

Realizamos un diagrama de árbol.



a) Aplicamos el teorema de la probabilidad total.

$$P(C) = P(H)P(C/H) + P(H^{C})P(C/H^{C}) = 0.6 \cdot 0.45 + 0.4 \cdot 0.55 = \boxed{0.49}$$

b) Es una probabilidad a posteriori. Aplicamos el teorema de Bayes.

$$P(H^{C}/C) = \frac{P(H^{C} \cap C)}{P(C)} = \frac{P(H^{C})P(C/H^{C})}{P(C)} = \frac{0.4 \cdot 0.55}{0.49} = \boxed{\frac{22}{49} \approx 0.449}$$