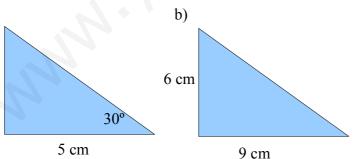
TRIGONOMETRY. ACTIVITIES. MATHEMATICS 4th E.S.O.

- 1. a) Convert $\frac{\pi}{3}$ radians to degrees.
 - b) Convert 135° to radians.
 - c) Convert $\frac{7\pi}{6}$ radians to degrees.
 - d) Convert 270° to radians.
- 2. If $\sin \alpha = 0.3$, α an acute angle, calculate $\cos \alpha$ and $\tan \alpha$.
- 3. If $\cos \alpha = \frac{3}{5}$, α an angle of the fourth quadrant, calculate $\sin \alpha$ and $\cos \alpha$.
- 4. If $\tan \alpha = 2\sqrt{2}$, $180^{\circ} < \alpha > 270^{\circ}$, calculate $\sin \alpha$ and $\cos \alpha$.
- 5. Using the trigonometric ratios of 30°, 45° and 60°, calculate:
- a) sin 120°
- b) cos (-45°)
- c) tan 300°
- d) tan (-150°)

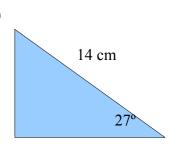
- e) sin (780°)
- f) cos 240°
- g) cos (150°)
- h) sin 3030°

- i) tan (-315°)
- j) sin 135°
- k) cos 215°
- 1) tan 315°
- 6. If $\sin \alpha = \frac{1}{4}$, α an acute angle, calculate $\sin (90^{\circ}-\alpha)$ and $\cos (90^{\circ}-\alpha)$.
- 7. If $\cos \alpha = \frac{5}{13}$, α an acute angle, calculate:
- a) $\sin (180^{\circ} \alpha)$
- b) $\sin (180^{\circ} + \alpha)$

c) $\sin (360^{\circ} - \alpha)$

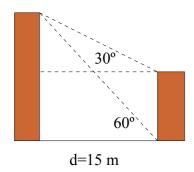

d) $\sin(-\alpha)$

e) $\sin (90^{\circ}-\alpha)$

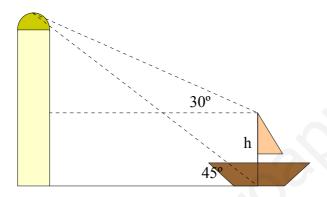

f) $\sin (90^{\circ}+\alpha)$

8. Solve the right-angle triangles below:

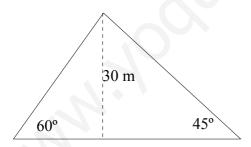
a)



c)



- 9. A man is walking along a straight road. He notices the top of a tower subtending an angle A=60° with the ground at the point where he is standing. If the height of the tower is h=20 m, then what is the distance of the man from the tower?
- 10. A little boy is flying a kite. The string of the kite makes an angle of 30° with the ground. If the height of the kite is h=9m, find the length of the string that the boy has used.
- 11. Two towers face each other separated by a distance d=15 m. As seen from the top of the first tower, the angle of depression of the second tower is 60° and that of the top is 30°. What is


the height of the second tower?

12. A ship of height h=12 m is sighted from a lighthouse. From the top of the light house, the angle of depression to the top of the mast and the base of the ship equal 30° and 45° respectively. How far is the ship from the lighthouse?

13. Two men on opposite sides of a TV tower of height 30 m notice the angle of elevation of the top tower to be 45° and 60° respectively. Find the distance between the two men.

14. Two men on the same side of a tall building notice the angle of elevation to the top of the building to be 30° and 60° respectively. If the height of the building is know to be h=90 m, find the distance between the two men.

SOLUTIONS:

1. a) 60° b)
$$\frac{3\pi}{4}$$
 c) 210° d) $\frac{3\pi}{2}$

d)
$$\frac{3\pi}{2}$$

2.
$$\cos \alpha = 0.95$$
 $\tan \alpha = 0.32$

3.
$$\sin \alpha = \frac{-4}{5} \tan \alpha = \frac{-4}{3}$$

4.
$$\sin \alpha = \frac{-2\sqrt{2}}{3}$$
 $\cos \alpha = \frac{-1}{3}$

5. a)
$$\frac{-\sqrt{3}}{2}$$

b)
$$\frac{\sqrt{2}}{2}$$

c)
$$-\sqrt{3}$$

d)
$$\frac{1}{\sqrt{3}}$$

e)
$$\frac{\sqrt{3}}{2}$$

f)
$$\frac{-1}{2}$$

g)
$$\frac{-\sqrt{3}}{2}$$

h)
$$\frac{1}{2}$$

$$j) \frac{\sqrt{2}}{2}$$

k)
$$\frac{-\sqrt{2}}{2}$$

5. a)
$$\frac{-\sqrt{3}}{2}$$
 b) $\frac{\sqrt{2}}{2}$ c) $-\sqrt{3}$ d) $\frac{1}{\sqrt{3}}$ e) $\frac{\sqrt{3}}{2}$ f) $\frac{-1}{2}$ g) $\frac{-\sqrt{3}}{2}$ h) $\frac{1}{2}$ i) 1 j) $\frac{\sqrt{2}}{2}$ k) $\frac{-\sqrt{2}}{2}$ l) -1

6. $\sin(90^{\circ}-\alpha) = \frac{\sqrt{15}}{4}$ $\cos(90^{\circ}-\alpha) = \frac{1}{4}$

7. a) $\frac{5}{13}$ b) $\frac{-5}{13}$ c) $\frac{-5}{13}$ d) $\frac{-5}{13}$ e) $\frac{12}{13}$ f) $\frac{12}{13}$

$$\cos(90^{\circ}\text{-}\alpha) = \frac{1}{4}$$

7. a)
$$\frac{5}{13}$$

b)
$$\frac{-5}{13}$$

c)
$$\frac{-5}{13}$$

d)
$$\frac{-5}{13}$$

e)
$$\frac{12}{13}$$

f)
$$\frac{12}{13}$$

8. a) The unknown angle is 60°, and the unknown sides are $\frac{10\sqrt{3}}{3}$ cm and $\frac{5\sqrt{3}}{3}$ cm.

$$\frac{10\sqrt{3}}{3}$$
 cm and $\frac{5\sqrt{3}}{3}$

b) The unknown side is $\sqrt{117} \approx 10,82$ cm and the unknown angles are 56°18′35″ and

c) The unknown angle is 63°, and the unknown sides are approximately 6,36 cm and 12,47 cm.

9.
$$\frac{20}{\sqrt{3}}$$
 m $\approx 11,55$ m

11.
$$10\sqrt{3} \,\mathrm{m} \approx 17,32 \,\mathrm{m}$$